-    TSUMOITE     -    BiTe

The crystal structure is fully relaxed (both unit cell parameters and atomic positions under symmetry constraints) starting from an experimental structure similar to the one reported in AMCSD 

Crystal Structure 


Because of the translational symmetry all the calculations are performed in the primitive unit cell and not in the conventional unit cell. The following information regarding the structure is given with respect to this primitive unit cell, which sometimes can take an unintuitive shape.

Symmetry (experimental): 

Space group:  164  P-3m1 
Lattice parameters (Å):  2.3406  2.3406  12.7013 
Angles (°):  90.0  90.0  120.0 

Symmetry (theoretical): 

Space group:  164  P-3m1 
Lattice parameters (Å):  4.2956  4.2956  23.0433 
Angles (°):  90.0  90.0  120.0 

Cell contents: 

Number of atoms:  12 
Number of atom types: 
Chemical composition: 

Atomic positions (theoretical):

Bi:  0.0000  0.0000  0.1243 
Bi:  0.3333  0.6667  0.2923 
Bi:  0.6667  0.3333  0.4640 
Te:  0.3333  0.6667  0.0510 
Te:  0.6667  0.3333  0.2088 
Te:  0.0000  0.0000  0.3664 
Bi:  0.0000  0.0000  0.8757 
Bi:  0.6667  0.3333  0.7077 
Bi:  0.3333  0.6667  0.5360 
Te:  0.6667  0.3333  0.9490 
Te:  0.3333  0.6667  0.7912 
Te:  0.0000  0.0000  0.6336 
Atom type 

We have listed here the reduced coordinates of all the atoms in the primitive unit cell.
It is enough to know only the position of the atoms from the assymetrical unit cell and then use the symmetry to build the whole crystal structure.

Visualization of the crystal structure: 

Size:

  
Nx:  Ny:  Nz:    
You can define the size of the supercell to be displayed in the jmol panel as integer translations along the three crys­tallo­gra­phic axis.
Please note that the structure is represented using the pri­mi­tive cell, and not the conventional one.
     

Powder Raman 

Powder Raman spectrum

The intensity of the Raman peaks is computed within the density-functional perturbation theory. The intensity depends on the temperature (for now fixed at 300K), frequency of the input laser (for now fixed at 21834 cm-1, frequency of the phonon mode and the Raman tensor. The Raman tensor represents the derivative of the dielectric tensor during the atomic displacement that corresponds to the phonon vibration. The Raman tensor is related to the polarizability of a specific phonon mode.

Horizontal:
Xmin:
Xmax:
Vertical:
Ymin:
Ymax:
 
Choose the polarization of the lasers.
I ∥ 
I ⊥ 
I Total 

Data about the phonon modes

Frequency of the transverse (TO) and longitudinal (LO) phonon modes in the zone-center. The longitudinal modes are computed along the three cartesian directions. You can visualize the atomic displacement pattern corresponding to each phonon by clicking on the appropriate cell in the table below.

1
TBD
0
0
0
0
2
TBD
0
0
0
0
3
TBD
0
0
0
0
4
TBD
23
23
23
23
1.148e+44
0.3
1.237e+44
0.4
2.384e+44
0.7
5
TBD
23
23
23
23
1.182e+44
0.4
1.784e+44
0.5
2.966e+44
0.9
6
TBD
30
30
30
30
4.197e+45
12.7
3.696e+45
11.2
7.893e+45
24.0
7
TBD
30
30
30
30
8.732e+45
26.5
6.079e+45
18.5
1.481e+46
45.0
8
TBD
35
35
35
35
7.183e+45
21.8
2.046e+45
6.2
9.229e+45
28.0
9
TBD
39
39
39
39
2.364e+45
7.2
3.116e+45
9.5
5.480e+45
16.6
10
TBD
45
46
46
45
2.534e+44
0.8
2.434e+44
0.7
4.968e+44
1.5
11
TBD
46
46
46
46
2.342e+44
0.7
3.439e+44
1.0
5.781e+44
1.8
12
TBD
46
46
46
46
2.812e+45
8.5
2.074e+45
6.3
4.886e+45
14.8
13
TBD
46
46
46
46
2.857e+44
0.9
2.505e+44
0.8
5.362e+44
1.6
14
TBD
67
67
67
67
2.544e+45
7.7
3.728e+45
11.3
6.273e+45
19.1
15
TBD
68
68
68
68
9.306e+44
2.8
9.878e+44
3.0
1.918e+45
5.8
16
TBD
85
87
85
85
4.453e+43
0.1
4.237e+43
0.1
8.690e+43
0.3
17
TBD
87
98
98
87
4.281e+44
1.3
3.159e+44
1.0
7.440e+44
2.3
18
TBD
98
98
98
98
2.711e+43
0.1
3.077e+43
0.1
5.788e+43
0.2
19
TBD
98
102
103
98
4.403e+43
0.1
3.523e+43
0.1
7.926e+43
0.2
20
TBD
105
105
105
105
7.531e+42
0.0
4.975e+42
0.0
1.251e+43
0.0
21
TBD
105
107
107
105
3.011e+43
0.1
2.315e+43
0.1
5.327e+43
0.2
22
TBD
107
107
107
107
8.134e+45
24.7
8.645e+45
26.3
1.678e+46
51.0
23
TBD
107
108
110
107
7.698e+45
23.4
1.236e+46
37.5
2.006e+46
60.9
24
TBD
110
110
110
110
6.284e+44
1.9
9.808e+44
3.0
1.609e+45
4.9
25
TBD
110
110
110
110
2.541e+44
0.8
2.937e+44
0.9
5.477e+44
1.7
26
TBD
110
111
111
111
4.449e+44
1.4
5.336e+44
1.6
9.785e+44
3.0
27
TBD
111
111
111
111
1.799e+46
54.6
1.494e+46
45.4
3.292e+46
100.0
28
TBD
111
112
115
118
6.203e+45
18.8
3.528e+45
10.7
9.731e+45
29.6
29
TBD
118
118
118
118
2.573e+45
7.8
3.758e+45
11.4
6.331e+45
19.2
30
TBD
118
118
118
119
1.861e+45
5.7
1.953e+45
5.9
3.814e+45
11.6
31
TBD
120
120
120
120
4.883e+45
14.8
1.463e+45
4.4
6.346e+45
19.3
32
TBD
124
124
124
124
3.826e+45
11.6
3.584e+45
10.9
7.410e+45
22.5
33
TBD
131
131
131
139
2.541e+44
0.8
3.302e+44
1.0
5.843e+44
1.8
34
TBD
142
142
142
142
1.645e+46
50.0
1.973e+45
6.0
1.842e+46
55.9
35
TBD
144
144
144
144
2.766e+45
8.4
1.662e+45
5.0
4.428e+45
13.4
36
TBD
145
145
145
145
8.722e+44
2.6
1.419e+45
4.3
2.291e+45
7.0
No.  Char.  ω TO  ω LOx  ω LOy  ω LOz  I ∥  I ⊥  I Total 
You can define the size of the supercell for the visualization of the vibration.
Nx: 
Ny: 
Nz: 
Normalized
Raw
Options for intensity.