-    CLAUDETITE     -    As2S3

Theoretical atomic positions and lattice parameters at experimental volum from AMCSD 

Crystal Structure 


Because of the translational symmetry all the calculations are performed in the primitive unit cell and not in the conventional unit cell. The following information regarding the structure is given with respect to this primitive unit cell, which sometimes can take an unintuitive shape.

Symmetry (experimental): 

Space group:  14  P2_1/a 
Lattice parameters (Å):  5.2500  12.8700  4.5400 
Angles (°):  90  93.82  90 

Symmetry (theoretical): 

Space group:  14  P2_1/a 
Lattice parameters (Å):  0.5292  0.5292  0.5292 
Angles (°):  9.00000000E+01  8.68791952E+01  9.00000000E+01 

Cell contents: 

Number of atoms:  20 
Number of atom types: 
Chemical composition: 

Atomic positions (theoretical):

As:  0.2823  0.0310  0.1228 
As:  0.1088  0.3201  0.1070 
S:  0.5062  0.2025  0.1442 
S:  0.7580  0.4156  0.1561 
S:  0.9453  0.1274  0.1785 
As:  0.2177  0.5310  0.3772 
As:  0.3912  0.8201  0.3930 
S:  0.9938  0.7025  0.3558 
S:  0.7420  0.9156  0.3439 
S:  0.5547  0.6274  0.3215 
As:  0.7177  0.9690  0.8772 
As:  0.8912  0.6799  0.8930 
S:  0.4938  0.7975  0.8558 
S:  0.2420  0.5844  0.8439 
S:  0.0547  0.8726  0.8215 
As:  0.7823  0.4690  0.6228 
As:  0.6088  0.1799  0.6070 
S:  0.0062  0.2975  0.6442 
S:  0.2580  0.0844  0.6561 
S:  0.4453  0.3726  0.6785 
Atom type 

We have listed here the reduced coordinates of all the atoms in the primitive unit cell.
It is enough to know only the position of the atoms from the assymetrical unit cell and then use the symmetry to build the whole crystal structure.

Visualization of the crystal structure: 

Size:

Nx:  Ny:  Nz: 
You can define the size of the supercell to be displayed in the jmol panel as integer translations along the three crys­tallo­gra­phic axis.
Please note that the structure is represented using the pri­mi­tive cell, and not the conventional one.
     

Powder Raman 

Powder Raman spectrum

The intensity of the Raman peaks is computed within the density-functional perturbation theory. The intensity depends on the temperature (for now fixed at 300K), frequency of the input laser (for now fixed at 21834 cm-1, frequency of the phonon mode and the Raman tensor. The Raman tensor represents the derivative of the dielectric tensor during the atomic displacement that corresponds to the phonon vibration. The Raman tensor is related to the polarizability of a specific phonon mode.

Choose the polarization of the lasers.

I ∥ 
I ⊥ 
I Total 
Horizontal:
Xmin:
Xmax:
Vertical:
Ymin:
Ymax:
 

Data about the phonon modes

Frequency of the transverse (TO) and longitudinal (LO) phonon modes in the zone-center. The longitudinal modes are computed along the three cartesian directions. You can visualize the atomic displacement pattern corresponding to each phonon by clicking on the appropriate cell in the table below.

1
ac
0
0
0
0
2
ac
0
0
0
0
3
ac
0
0
0
0
4
Ag
45
45
45
45
8.921e+43
20.8
1.567e+43
3.7
1.049e+44
24.4
5
Bu
47
47
47
47
6
Bg
69
69
69
69
1.421e+42
0.3
1.510e+42
0.4
2.931e+42
0.7
7
Bu
69
69
71
69
3.249e+42
0.8
3.453e+42
0.8
6.702e+42
1.6
8
Au
71
71
74
72
9
Bg
79
79
79
79
8.408e+42
2.0
1.409e+43
3.3
2.250e+43
5.2
10
Ag
80
80
80
80
2.655e+43
6.2
1.126e+43
2.6
3.782e+43
8.8
11
Ag
88
88
88
88
5.438e+43
12.7
1.525e+43
3.6
6.963e+43
16.2
12
Bg
90
90
90
90
3.755e+42
0.9
6.302e+42
1.5
1.006e+43
2.3
13
Au
103
103
103
103
14
Ag
109
109
109
109
2.828e+43
6.6
1.589e+43
3.7
4.416e+43
10.3
15
Bu
114
114
115
114
16
Bu
120
120
122
120
17
Ag
129
129
129
129
1.285e+43
3.0
7.692e+42
1.8
2.054e+43
4.8
18
Bg
132
132
132
132
1.550e+42
0.4
1.937e+42
0.5
3.487e+42
0.8
19
Au
150
150
150
153
20
Bg
153
153
153
155
7.652e+42
1.8
1.275e+43
3.0
2.040e+43
4.8
21
Au
162
162
162
163
22
Bu
164
164
166
164
23
Bg
166
166
172
166
6.603e+42
1.5
7.024e+42
1.6
1.363e+43
3.2
24
Ag
176
176
176
176
1.095e+44
25.5
2.096e+43
4.9
1.304e+44
30.4
25
Au
179
181
179
179
26
Bg
181
181
181
181
2.614e+42
0.6
4.288e+42
1.0
6.902e+42
1.6
27
Au
186
186
186
191
28
Ag
191
191
191
194
9.763e+43
22.7
3.045e+43
7.1
1.281e+44
29.8
29
Bu
194
194
195
196
30
Bg
196
196
196
200
6.666e+42
1.6
1.075e+43
2.5
1.742e+43
4.1
31
Ag
200
200
200
206
1.899e+44
44.3
4.594e+43
10.7
2.359e+44
55.0
32
Bu
206
206
206
218
33
Bu
218
218
224
236
34
Bu
236
236
239
236
35
Ag
239
239
243
239
1.126e+44
26.2
1.400e+43
3.3
1.266e+44
29.5
36
Au
243
246
246
246
37
Bg
246
268
259
249
1.964e+42
0.5
2.169e+42
0.5
4.133e+42
1.0
38
Bg
269
269
269
269
2.257e+43
5.3
2.398e+43
5.6
4.655e+43
10.8
39
Au
280
281
280
281
40
Ag
281
282
281
282
3.723e+44
86.8
5.686e+43
13.2
4.292e+44
100.0
41
Bu
282
282
286
286
42
Ag
286
286
296
296
5.221e+43
12.2
1.613e+43
3.8
6.834e+43
15.9
43
Bg
296
296
300
302
2.650e+42
0.6
3.012e+42
0.7
5.662e+42
1.3
44
Au
306
309
306
309
45
Ag
309
310
309
315
2.772e+44
64.6
5.485e+43
12.8
3.320e+44
77.4
46
Au
317
320
317
323
47
Bu
323
323
328
327
48
Au
328
331
328
331
49
Bg
331
332
331
332
2.208e+42
0.5
3.670e+42
0.9
5.878e+42
1.4
50
Bu
332
338
338
334
51
Bg
339
339
339
339
3.921e+43
9.1
5.163e+43
12.0
9.084e+43
21.2
52
Ag
345
345
345
345
3.243e+43
7.6
1.362e+43
3.2
4.605e+43
10.7
53
Bu
346
346
347
346
54
Au
350
351
350
351
55
Ag
351
351
351
351
3.369e+43
7.8
6.967e+42
1.6
4.065e+43
9.5
56
Bg
356
356
356
356
2.886e+42
0.7
3.775e+42
0.9
6.661e+42
1.6
57
Bu
371
371
372
371
58
Ag
384
384
384
384
1.328e+44
30.9
1.187e+43
2.8
1.447e+44
33.7
59
Bg
386
386
386
386
3.139e+43
7.3
4.492e+43
10.5
7.631e+43
17.8
60
Au
387
388
387
388
No.  Char.  ω TO  ω LOx  ω LOy  ω LOz  I ∥  I ⊥  I Total 

You can define the size of the supercell for the visualization of the vibration.

Nx: 
Ny: 
Nz: 
Normalized
Raw
Options for intensity.