-    TAUSONITE     -    SrTiO3

The crystal structure is fully relaxed (both unit cell parameters and atomic positions under symmetry constraints) starting from an experimental structure similar to the one reported in AMCSD. Tetter norm-conserving pseudopotential for Ti. 

Crystal Structure 


Because of the translational symmetry all the calculations are performed in the primitive unit cell and not in the conventional unit cell. The following information regarding the structure is given with respect to this primitive unit cell, which sometimes can take an unintuitive shape.

Symmetry (experimental): 

Space group:  62  Pbnm 
Lattice parameters (Å):  5.4043  5.4224  7.6510 
Angles (°):  90  90  90 

Symmetry (theoretical): 

Space group:  62  Pbnm 
Lattice parameters (Å):  5.4307  5.4063  7.6494 
Angles (°):  90  90  90 

Cell contents: 

Number of atoms:  20 
Number of atom types: 
Chemical composition: 

Atomic positions (theoretical):

Sr:  0.9980  0.0133  0.2500 
Ti:  0.5000  0.0000  0.0000 
O:  0.0416  0.4971  0.2500 
O:  0.7317  0.2685  0.0215 
Sr:  0.4980  0.4867  0.7500 
Ti:  0.0000  0.5000  0.0000 
O:  0.5416  0.0029  0.7500 
O:  0.2317  0.2315  0.9785 
Sr:  0.0020  0.9867  0.7500 
Ti:  0.5000  0.0000  0.5000 
O:  0.9584  0.5029  0.7500 
O:  0.2683  0.7315  0.5215 
Sr:  0.5020  0.5133  0.2500 
Ti:  0.0000  0.5000  0.5000 
O:  0.4584  0.9971  0.2500 
O:  0.7683  0.7685  0.4785 
O:  0.2683  0.7315  0.9785 
O:  0.7683  0.7685  0.0215 
O:  0.7317  0.2685  0.4785 
O:  0.2317  0.2315  0.5215 
Atom type 

We have listed here the reduced coordinates of all the atoms in the primitive unit cell.
It is enough to know only the position of the atoms from the assymetrical unit cell and then use the symmetry to build the whole crystal structure.

Visualization of the crystal structure: 

Size:

  
Nx:  Ny:  Nz:    
You can define the size of the supercell to be displayed in the jmol panel as integer translations along the three crys­tallo­gra­phic axis.
Please note that the structure is represented using the pri­mi­tive cell, and not the conventional one.
     

Powder Raman 

Powder Raman spectrum

The intensity of the Raman peaks is computed within the density-functional perturbation theory. The intensity depends on the temperature (for now fixed at 300K), frequency of the input laser (for now fixed at 21834 cm-1, frequency of the phonon mode and the Raman tensor. The Raman tensor represents the derivative of the dielectric tensor during the atomic displacement that corresponds to the phonon vibration. The Raman tensor is related to the polarizability of a specific phonon mode.

Horizontal:
Xmin:
Xmax:
Vertical:
Ymin:
Ymax:
 
Choose the polarization of the lasers.
I ∥ 
I ⊥ 
I Total 

Data about the phonon modes

Frequency of the transverse (TO) and longitudinal (LO) phonon modes in the zone-center. The longitudinal modes are computed along the three cartesian directions. You can visualize the atomic displacement pattern corresponding to each phonon by clicking on the appropriate cell in the table below.

1
ac
0
0
0
0
2
ac
0
0
0
0
3
ac
0
0
0
0
4
B1g
71
71
71
71
1.298e+40
26.9
1.785e+40
37.0
3.084e+40
63.9
5
A1g
73
73
73
73
4.689e+39
9.7
3.026e+38
0.6
4.992e+39
10.4
6
Au
100
100
100
100
7
B3g
103
103
103
103
1.705e+38
0.4
2.345e+38
0.5
4.050e+38
0.8
8
B3u
116
119
116
116
9
A1g
119
119
119
119
9.404e+39
19.5
1.007e+38
0.2
9.505e+39
19.7
10
B2u
126
126
129
126
11
B1g
129
129
133
129
2.285e+39
4.7
3.141e+39
6.5
5.426e+39
11.3
12
B1u
145
145
145
145
13
Au
145
145
145
149
14
Au
152
152
152
152
15
B2g
155
155
155
155
2.902e+38
0.6
3.990e+38
0.8
6.892e+38
1.4
16
B1g
161
161
161
161
3.898e+39
8.1
5.360e+39
11.1
9.259e+39
19.2
17
B1u
170
170
170
173
18
B2u
173
173
175
175
19
A1g
175
175
181
180
1.144e+40
23.7
7.048e+39
14.6
1.849e+40
38.3
20
B1u
183
183
183
184
21
B3g
184
184
184
185
2.288e+37
0.0
3.145e+37
0.1
5.433e+37
0.1
22
B3u
185
192
185
192
23
B2u
192
194
201
201
24
B3u
201
212
212
212
25
A1g
212
221
221
221
3.081e+40
63.9
1.549e+38
0.3
3.096e+40
64.2
26
Au
221
228
228
227
27
B1u
228
257
257
257
28
B2u
257
271
272
272
29
B3u
272
281
281
281
30
Au
281
292
298
298
31
B3u
298
301
299
301
32
B2u
301
327
327
327
33
A1g
327
330
330
330
3.105e+39
6.4
7.082e+38
1.5
3.813e+39
7.9
34
B3u
330
334
333
334
35
B2u
334
344
344
344
36
B2g
344
354
354
354
1.920e+38
0.4
2.639e+38
0.5
4.559e+38
0.9
37
B3g
354
372
372
372
3.176e+38
0.7
4.368e+38
0.9
7.544e+38
1.6
38
B1g
372
442
448
439
3.209e+37
0.1
4.413e+37
0.1
7.622e+37
0.2
39
Au
448
448
452
448
40
B1u
452
452
453
453
41
B3u
453
454
454
454
42
B1g
454
466
463
466
3.902e+39
8.1
5.365e+39
11.1
9.267e+39
19.2
43
B2g
466
474
466
474
1.085e+39
2.2
1.491e+39
3.1
2.576e+39
5.3
44
A1g
474
485
474
481
2.756e+40
57.1
2.067e+40
42.9
4.822e+40
100.0
45
B1g
485
489
485
485
1.210e+40
25.1
1.663e+40
34.5
2.873e+40
59.6
46
B3u
500
501
500
500
47
B2u
508
508
508
508
48
Au
518
518
518
518
49
B3g
536
536
536
536
7.720e+39
16.0
1.062e+40
22.0
1.834e+40
38.0
50
B2g
539
539
539
539
1.914e+40
39.7
2.632e+40
54.6
4.546e+40
94.3
51
B1u
542
542
542
542
52
B2u
554
554
555
554
53
Au
556
556
556
556
54
A1g
561
561
561
561
6.589e+39
13.7
4.838e+39
10.0
1.143e+40
23.7
55
B2u
569
569
576
569
56
B1u
576
576
583
583
57
B3u
583
793
793
793
58
B3g
793
824
820
820
7.465e+36
0.0
1.026e+37
0.0
1.773e+37
0.0
59
B1g
832
832
832
832
2.189e+36
0.0
3.010e+36
0.0
5.199e+36
0.0
60
B2g
866
866
866
866
5.477e+37
0.1
7.531e+37
0.2
1.301e+38
0.3
No.  Char.  ω TO  ω LOx  ω LOy  ω LOz  I ∥  I ⊥  I Total 
You can define the size of the supercell for the visualization of the vibration.
Nx: 
Ny: 
Nz: 
Normalized
Raw
Options for intensity.