-    WEISSBERGITE     -    TlSbS2

The crystal structure is fully relaxed (both unit cell parameters and atomic positions under symmetry constraints) starting from an experimental structure similar to the one reported in AMCSD

Crystal Structure 


Because of the translational symmetry all the calculations are performed in the primitive unit cell and not in the conventional unit cell. The following information regarding the structure is given with respect to this primitive unit cell, which sometimes can take an unintuitive shape.

Symmetry (experimental): 

Space group:  P-1 
Lattice parameters (Å):  6.1230  6.2930  11.8380 
Angles (°):  101.34  98.39  103.21 

Symmetry (theoretical): 

Space group:  P-1 
Lattice parameters (Å):  5.5975  5.8973  10.8039 
Angles (°):  104.95  90.49  106.52 

Cell contents: 

Number of atoms:  16 
Number of atom types: 
Chemical composition: 

Atomic positions (theoretical):

Tl:  0.5801  0.2629  0.6645 
Tl:  0.0799  0.2678  0.9152 
Sb:  0.5978  0.2351  0.1603 
Sb:  0.0996  0.2351  0.4096 
S:  0.4310  0.7847  0.0939 
S:  0.0676  0.2404  0.1617 
S:  0.5753  0.2454  0.4065 
S:  0.9354  0.7842  0.3451 
Tl:  0.4199  0.7371  0.3355 
Tl:  0.9201  0.7322  0.0848 
Sb:  0.4022  0.7649  0.8397 
Sb:  0.9004  0.7649  0.5904 
S:  0.5690  0.2153  0.9061 
S:  0.9324  0.7596  0.8383 
S:  0.4247  0.7546  0.5935 
S:  0.0646  0.2158  0.6549 
Atom type 

We have listed here the reduced coordinates of all the atoms in the primitive unit cell.
It is enough to know only the position of the atoms from the assymetrical unit cell and then use the symmetry to build the whole crystal structure.

Visualization of the crystal structure: 

Size:

  
Nx:  Ny:  Nz:    
You can define the size of the supercell to be displayed in the jmol panel as integer translations along the three crys­tallo­gra­phic axis.
Please note that the structure is represented using the pri­mi­tive cell, and not the conventional one.
     

Powder Raman 

Powder Raman spectrum

The intensity of the Raman peaks is computed within the density-functional perturbation theory. The intensity depends on the temperature (for now fixed at 300K), frequency of the input laser (for now fixed at 21834 cm-1, frequency of the phonon mode and the Raman tensor. The Raman tensor represents the derivative of the dielectric tensor during the atomic displacement that corresponds to the phonon vibration. The Raman tensor is related to the polarizability of a specific phonon mode.

Horizontal:
Xmin:
Xmax:
Vertical:
Ymin:
Ymax:
 
Choose the polarization of the lasers.
I ∥ 
I ⊥ 
I Total 

Data about the phonon modes

Frequency of the transverse (TO) and longitudinal (LO) phonon modes in the zone-center. The longitudinal modes are computed along the three cartesian directions. You can visualize the atomic displacement pattern corresponding to each phonon by clicking on the appropriate cell in the table below.

1
ac
-1
-1
-1
-1
2
ac
0
0
0
0
3
ac
0
0
0
0
4
Ag
39
39
39
39
1.225e+44
4.6
6.936e+43
2.6
1.918e+44
7.2
5
Au
43
43
43
43
6
Ag
45
45
45
45
2.908e+44
10.9
1.008e+44
3.8
3.917e+44
14.6
7
Au
48
48
48
49
4.343e+40
0.0
1.426e+40
0.0
5.769e+40
0.0
8
Ag
51
51
51
51
5.977e+43
2.2
4.594e+43
1.7
1.057e+44
4.0
9
Au
52
52
52
52
4.473e+40
0.0
4.952e+40
0.0
9.425e+40
0.0
10
Ag
54
54
54
54
3.297e+43
1.2
5.955e+42
0.2
3.893e+43
1.5
11
Ag
58
58
58
58
6.206e+43
2.3
2.370e+43
0.9
8.576e+43
3.2
12
Au
59
64
61
59
13
Ag
64
66
64
64
3.631e+44
13.6
1.027e+44
3.8
4.658e+44
17.4
14
Au
68
68
68
69
15
Ag
71
71
71
71
9.296e+43
3.5
3.083e+43
1.2
1.238e+44
4.6
16
Au
75
75
75
75
17
Ag
78
78
78
78
2.052e+43
0.8
1.740e+43
0.7
3.792e+43
1.4
18
Au
80
80
80
80
19
Ag
87
87
87
87
2.360e+44
8.8
5.127e+43
1.9
2.872e+44
10.7
20
Ag
90
90
90
90
5.275e+43
2.0
4.622e+43
1.7
9.897e+43
3.7
21
Au
104
106
105
106
22
Au
113
117
114
113
1.021e+41
0.0
2.813e+40
0.0
1.302e+41
0.0
23
Ag
117
118
117
117
2.060e+43
0.8
9.512e+42
0.4
3.011e+43
1.1
24
Ag
122
122
122
122
3.270e+44
12.2
9.267e+43
3.5
4.196e+44
15.7
25
Au
129
147
130
129
5.234e+40
0.0
1.588e+40
0.0
6.822e+40
0.0
26
Au
147
153
147
150
27
Ag
153
163
153
153
2.435e+44
9.1
1.832e+44
6.8
4.267e+44
16.0
28
Au
163
174
174
165
29
Ag
174
181
180
174
1.964e+45
73.4
7.110e+44
26.6
2.675e+45
100.0
30
Ag
181
183
181
181
1.013e+44
3.8
3.460e+43
1.3
1.359e+44
5.1
31
Au
183
189
188
188
32
Au
189
192
193
193
33
Au
193
197
197
197
4.098e+40
0.0
2.176e+40
0.0
6.274e+40
0.0
34
Ag
197
198
198
197
1.490e+44
5.6
1.415e+44
5.3
2.905e+44
10.9
35
Au
198
209
209
209
36
Ag
209
209
210
210
5.478e+44
20.5
1.132e+44
4.2
6.610e+44
24.7
37
Ag
210
213
213
213
1.014e+44
3.8
1.061e+44
4.0
2.075e+44
7.8
38
Ag
213
219
219
219
1.037e+44
3.9
4.503e+43
1.7
1.487e+44
5.6
39
Au
219
228
228
228
40
Ag
228
230
230
230
4.033e+44
15.1
1.250e+44
4.7
5.283e+44
19.8
41
Au
230
238
238
238
8.039e+40
0.0
4.459e+40
0.0
1.250e+41
0.0
42
Ag
238
243
243
242
5.848e+44
21.9
1.373e+44
5.1
7.221e+44
27.0
43
Au
243
244
244
244
6.791e+41
0.0
6.358e+41
0.0
1.315e+42
0.0
44
Ag
244
288
270
286
4.065e+43
1.5
2.943e+43
1.1
7.009e+43
2.6
45
Au
288
295
291
294
46
Au
295
295
295
295
5.479e+42
0.2
5.528e+42
0.2
1.101e+43
0.4
47
Ag
296
299
299
299
1.559e+44
5.8
1.548e+44
5.8
3.107e+44
11.6
48
Ag
299
372
363
519
2.986e+44
11.2
8.775e+43
3.3
3.864e+44
14.4
No.  Char.  ω TO  ω LOx  ω LOy  ω LOz  I ∥  I ⊥  I Total 
You can define the size of the supercell for the visualization of the vibration.
Nx: 
Ny: 
Nz: 
Normalized
Raw
Options for intensity.