-    WITHERITE     -    BaCO3

Theoretical atomic positions and lattice parameters at experimental volum from AMCSD 

Crystal Structure 


Because of the translational symmetry all the calculations are performed in the primitive unit cell and not in the conventional unit cell. The following information regarding the structure is given with respect to this primitive unit cell, which sometimes can take an unintuitive shape.

Symmetry (experimental): 

Space group:  62  Pmcn 
Lattice parameters (Å):  5.3146  8.9043  6.4341 
Angles (°):  90  90  90 

Symmetry (theoretical): 

Space group:  62  Pmcn 
Lattice parameters (Å):  5.2894  8.9229  6.4513 
Angles (°):  90  90  90 

Cell contents: 

Number of atoms:  20 
Number of atom types: 
Chemical composition: 

Atomic positions (theoretical):

Ba:  0.2500  0.4162  0.7535 
C:  0.2500  0.7554  0.9231 
O:  0.2500  0.8990  0.9172 
O:  0.4601  0.6835  0.9224 
Ba:  0.7500  0.9162  0.7465 
C:  0.7500  0.2554  0.5769 
O:  0.7500  0.3990  0.5828 
O:  0.5399  0.1835  0.5776 
Ba:  0.7500  0.5838  0.2465 
C:  0.7500  0.2446  0.0769 
O:  0.7500  0.1010  0.0828 
O:  0.9601  0.3165  0.0776 
Ba:  0.2500  0.0838  0.2535 
C:  0.2500  0.7446  0.4231 
O:  0.2500  0.6010  0.4172 
O:  0.0399  0.8165  0.4224 
O:  0.5399  0.3165  0.0776 
O:  0.4601  0.8165  0.4224 
O:  0.0399  0.6835  0.9224 
O:  0.9601  0.1835  0.5776 
Atom type 

We have listed here the reduced coordinates of all the atoms in the primitive unit cell.
It is enough to know only the position of the atoms from the assymetrical unit cell and then use the symmetry to build the whole crystal structure.

Visualization of the crystal structure: 

Size:

  
Nx:  Ny:  Nz:    
You can define the size of the supercell to be displayed in the jmol panel as integer translations along the three crys­tallo­gra­phic axis.
Please note that the structure is represented using the pri­mi­tive cell, and not the conventional one.
     

Powder Raman 

Powder Raman spectrum

The intensity of the Raman peaks is computed within the density-functional perturbation theory. The intensity depends on the temperature (for now fixed at 300K), frequency of the input laser (for now fixed at 21834 cm-1, frequency of the phonon mode and the Raman tensor. The Raman tensor represents the derivative of the dielectric tensor during the atomic displacement that corresponds to the phonon vibration. The Raman tensor is related to the polarizability of a specific phonon mode.

Horizontal:
Xmin:
Xmax:
Vertical:
Ymin:
Ymax:
 
Choose the polarization of the lasers.
I ∥ 
I ⊥ 
I Total 

Data about the phonon modes

Frequency of the transverse (TO) and longitudinal (LO) phonon modes in the zone-center. The longitudinal modes are computed along the three cartesian directions. You can visualize the atomic displacement pattern corresponding to each phonon by clicking on the appropriate cell in the table below.

1
ac
0
0
0
0
2
ac
0
0
0
0
3
ac
0
0
0
0
4
B2u
74
74
74
74
5
Au
76
76
76
76
1.884e+38
0.1
1.402e+38
0.1
3.286e+38
0.3
6
Ag
76
76
76
76
7.001e+38
0.6
5.209e+38
0.4
1.221e+39
1.0
7
B2g
77
77
77
77
7.283e+38
0.6
1.001e+39
0.8
1.730e+39
1.4
8
B1g
88
88
88
88
4.745e+39
3.7
6.524e+39
5.1
1.127e+40
8.9
9
B3g
91
91
91
91
2.735e+38
0.2
3.761e+38
0.3
6.496e+38
0.5
10
Ag
96
96
96
96
2.067e+39
1.6
1.493e+39
1.2
3.560e+39
2.8
11
B2g
128
128
128
128
5.348e+40
42.1
7.354e+40
57.9
1.270e+41
100.0
12
B3u
132
132
132
132
13
B3g
133
133
133
133
1.315e+38
0.1
1.808e+38
0.1
3.123e+38
0.2
14
B1u
133
134
133
134
15
Au
134
136
134
137
16
Ag
140
140
140
140
1.045e+39
0.8
7.434e+38
0.6
1.789e+39
1.4
17
B2u
140
140
143
140
5.286e+39
4.2
3.759e+39
3.0
9.044e+39
7.1
18
B1u
143
143
145
143
5.269e+39
4.1
7.245e+39
5.7
1.251e+40
9.9
19
B3g
145
145
145
145
4.409e+39
3.5
3.300e+39
2.6
7.709e+39
6.1
20
B1g
145
145
145
145
5.125e+39
4.0
3.836e+39
3.0
8.962e+39
7.1
21
Ag
145
145
150
153
3.980e+40
31.3
5.472e+40
43.1
9.452e+40
74.4
22
B3u
153
153
153
154
23
B1g
154
154
154
156
1.221e+39
1.0
1.679e+39
1.3
2.900e+39
2.3
24
B1u
156
156
156
164
25
B2g
164
164
164
166
4.286e+39
3.4
5.894e+39
4.6
1.018e+40
8.0
26
B3u
166
170
166
170
27
Au
170
174
170
174
28
B3g
174
178
174
178
2.494e+39
2.0
3.429e+39
2.7
5.923e+39
4.7
29
B2u
178
183
183
183
30
B2g
183
190
190
190
7.081e+37
0.1
9.736e+37
0.1
1.682e+38
0.1
31
Au
190
206
206
206
32
B1g
206
212
212
212
9.898e+39
7.8
1.361e+40
10.7
2.351e+40
18.5
33
Ag
212
215
215
215
8.127e+39
6.4
6.095e+39
4.8
1.422e+40
11.2
34
B2u
215
218
218
218
35
B3g
218
227
227
226
5.330e+39
4.2
7.329e+39
5.8
1.266e+40
10.0
36
B1u
227
255
256
244
37
B1g
676
676
676
676
2.363e+39
1.9
3.249e+39
2.6
5.611e+39
4.4
38
Ag
677
677
677
677
4.932e+39
3.9
3.482e+39
2.7
8.413e+39
6.6
39
Au
678
678
678
678
40
B3u
680
680
680
680
41
B2u
680
681
681
680
42
B2g
681
682
682
681
1.136e+39
0.9
1.562e+39
1.2
2.698e+39
2.1
43
B3g
685
685
685
685
1.045e+39
0.8
1.437e+39
1.1
2.481e+39
2.0
44
B1u
689
689
689
689
45
B1u
842
842
842
843
46
Ag
843
843
843
851
7.896e+37
0.1
1.107e+36
0.0
8.007e+37
0.1
47
B3g
866
866
866
866
48
B2u
867
867
867
867
49
B3g
1062
1062
1062
1062
1.181e+36
0.0
1.624e+36
0.0
2.806e+36
0.0
50
B2u
1064
1064
1064
1064
51
B1u
1064
1064
1064
1064
7.203e+37
0.1
9.204e+35
0.0
7.295e+37
0.1
52
Ag
1064
1064
1064
1064
6.963e+40
54.8
8.898e+38
0.7
7.052e+40
55.5
53
Au
1384
1384
1384
1384
54
B1g
1400
1400
1400
1400
2.714e+37
0.0
3.731e+37
0.0
6.445e+37
0.1
55
B1u
1407
1407
1407
1407
56
Ag
1411
1411
1411
1411
3.055e+38
0.2
7.534e+37
0.1
3.809e+38
0.3
57
B3u
1420
1421
1420
1420
58
B2u
1421
1424
1424
1421
59
B2g
1424
1508
1508
1424
5.587e+39
4.4
7.682e+39
6.0
1.327e+40
10.4
60
B3g
1508
1517
1517
1508
7.280e+39
5.7
1.001e+40
7.9
1.729e+40
13.6
No.  Char.  ω TO  ω LOx  ω LOy  ω LOz  I ∥  I ⊥  I Total 
You can define the size of the supercell for the visualization of the vibration.
Nx: 
Ny: 
Nz: 
Normalized
Raw
Options for intensity.