-    Na6O(SO4)2     -    Na6O(SO4)2

Theoretical atomic positions and lattice parameters at experimental volum from ICSD database; code 411442 

Crystal Structure 


Because of the translational symmetry all the calculations are performed in the primitive unit cell and not in the conventional unit cell. The following information regarding the structure is given with respect to this primitive unit cell, which sometimes can take an unintuitive shape.

Symmetry (experimental): 

Space group:  225  Fm-3m 
Lattice parameters (Å):  9.6766  9.6766  9.6766 
Angles (°):  90.0  90.0  90.0 

Symmetry (theoretical): 

Space group:  225  Fm-3m 
Lattice parameters (Å):  0.5292  0.5292  0.5292 
Angles (°):  60  60  60 

Cell contents: 

Number of atoms:  17 
Number of atom types: 
Chemical composition: 

Atomic positions (theoretical):

S:  0.2500  0.2500  0.2500 
Na:  0.7638  0.7638  0.2362 
O:  0.3384  0.3384  0.9849 
O:  0.0000  0.0000  0.0000 
Na:  0.2362  0.7638  0.7638 
O:  0.9849  0.3384  0.3384 
O:  0.3384  0.3384  0.3384 
Na:  0.2362  0.2362  0.7638 
S:  0.7500  0.7500  0.7500 
O:  0.6616  0.6616  0.6616 
Na:  0.7638  0.2362  0.7638 
O:  0.3384  0.9849  0.3384 
Na:  0.7638  0.2362  0.2362 
O:  0.6616  0.6616  0.0151 
O:  0.6616  0.0151  0.6616 
O:  0.0151  0.6616  0.6616 
Na:  0.2362  0.7638  0.2362 
Atom type 

We have listed here the reduced coordinates of all the atoms in the primitive unit cell.
It is enough to know only the position of the atoms from the assymetrical unit cell and then use the symmetry to build the whole crystal structure.

Visualization of the crystal structure: 

Size:

  
Nx:  Ny:  Nz:    
You can define the size of the supercell to be displayed in the jmol panel as integer translations along the three crys­tallo­gra­phic axis.
Please note that the structure is represented using the pri­mi­tive cell, and not the conventional one.
     

Powder Raman 

Powder Raman spectrum

The intensity of the Raman peaks is computed within the density-functional perturbation theory. The intensity depends on the temperature (for now fixed at 300K), frequency of the input laser (for now fixed at 21834 cm-1, frequency of the phonon mode and the Raman tensor. The Raman tensor represents the derivative of the dielectric tensor during the atomic displacement that corresponds to the phonon vibration. The Raman tensor is related to the polarizability of a specific phonon mode.

Horizontal:
Xmin:
Xmax:
Vertical:
Ymin:
Ymax:
 
Choose the polarization of the lasers.
I ∥ 
I ⊥ 
I Total 

Data about the phonon modes

Frequency of the transverse (TO) and longitudinal (LO) phonon modes in the zone-center. The longitudinal modes are computed along the three cartesian directions. You can visualize the atomic displacement pattern corresponding to each phonon by clicking on the appropriate cell in the table below.

1
0
0
0
0
2
0
0
0
0
3
0
0
0
0
4
76
76
76
76
5
76
76
76
76
6
76
76
76
76
7
132
132
132
132
3.185e+38
0.3
4.073e+38
0.3
7.258e+38
0.6
8
132
132
132
132
3.184e+38
0.3
5.291e+38
0.4
8.474e+38
0.7
9
132
132
132
132
3.180e+38
0.3
3.768e+38
0.3
6.948e+38
0.6
10
142
142
142
142
11
142
142
142
142
12
142
142
142
142
13
153
153
153
153
14
153
153
153
153
15
153
153
153
153
16
154
154
154
154
17
154
154
154
154
18
154
178
178
178
19
178
178
178
178
20
178
178
178
178
21
178
181
181
181
22
181
181
181
181
2.222e+39
1.9
1.667e+39
1.4
3.889e+39
3.3
23
181
188
188
188
2.220e+39
1.9
1.665e+39
1.4
3.885e+39
3.3
24
195
195
195
195
5.414e+36
0.0
7.444e+36
0.0
1.286e+37
0.0
25
195
195
195
195
5.544e+36
0.0
7.623e+36
0.0
1.317e+37
0.0
26
195
195
195
195
5.765e+36
0.0
7.927e+36
0.0
1.369e+37
0.0
27
212
212
212
212
28
212
212
212
212
29
212
235
235
235
30
273
273
273
273
3.477e+40
29.5
2.559e+32
0.0
3.477e+40
29.5
31
330
330
330
330
32
330
330
331
331
33
331
369
369
369
34
436
436
436
436
35
436
436
436
436
36
457
457
457
457
5.753e+39
4.9
4.315e+39
3.7
1.007e+40
8.5
37
457
457
457
457
5.753e+39
4.9
4.315e+39
3.7
1.007e+40
8.5
38
594
594
594
594
39
594
594
594
594
40
594
602
602
602
41
602
602
602
602
2.849e+36
0.0
3.917e+36
0.0
6.767e+36
0.0
42
602
602
602
602
2.852e+36
0.0
4.427e+36
0.0
7.279e+36
0.0
43
602
605
605
605
2.894e+36
0.0
3.474e+36
0.0
6.369e+36
0.0
44
956
956
956
956
45
960
960
960
960
1.180e+41
100.0
1.090e+32
0.0
1.180e+41
100.0
46
1092
1092
1092
1092
6.972e+39
5.9
1.011e+40
8.6
1.708e+40
14.5
47
1092
1092
1092
1092
6.972e+39
5.9
1.024e+40
8.7
1.721e+40
14.6
48
1092
1092
1092
1092
6.972e+39
5.9
8.416e+39
7.1
1.539e+40
13.0
49
1108
1108
1108
1108
50
1108
1108
1108
1108
51
1108
1164
1164
1164
No.  Char.  ω TO  ω LOx  ω LOy  ω LOz  I ∥  I ⊥  I Total 
You can define the size of the supercell for the visualization of the vibration.
Nx: 
Ny: 
Nz: 
Normalized
Raw
Options for intensity.