-    SODIUM SULFATE     -    Na2SO4

Theoretical atomic positions and lattice parameters at experimental volum from ICSD database; code 31687 

Crystal Structure 


Because of the translational symmetry all the calculations are performed in the primitive unit cell and not in the conventional unit cell. The following information regarding the structure is given with respect to this primitive unit cell, which sometimes can take an unintuitive shape.

Symmetry (experimental): 

Space group:  52  Pbnn 
Lattice parameters (Å):  5.6000  8.9500  6.9900 
Angles (°):  90.0  90.0  90.0 

Symmetry (theoretical): 

Space group:  52  Pbnn 
Lattice parameters (Å):  5.6816  8.9441  6.8941 
Angles (°):  90.0  90.0  90.0 

Cell contents: 

Number of atoms:  28 
Number of atom types: 
Chemical composition: 

Atomic positions (theoretical):

S:  0.2500  0.0978  0.2500 
Na:  0.2500  0.4321  0.2500 
Na:  0.7500  0.2500  0.0000 
O:  0.0377  0.1954  0.2500 
O:  0.2500  0.0028  0.0759 
S:  0.2500  0.4022  0.7500 
Na:  0.2500  0.0679  0.7500 
O:  0.0377  0.3046  0.7500 
O:  0.2500  0.4972  0.9241 
Na:  0.7500  0.2500  0.5000 
O:  0.4623  0.3046  0.7500 
O:  0.2500  0.4972  0.5759 
O:  0.4623  0.1954  0.2500 
O:  0.2500  0.0028  0.4241 
S:  0.7500  0.9022  0.7500 
Na:  0.7500  0.5679  0.7500 
Na:  0.2500  0.7500  0.0000 
O:  0.9623  0.8046  0.7500 
O:  0.7500  0.9972  0.9241 
S:  0.7500  0.5978  0.2500 
Na:  0.7500  0.9321  0.2500 
O:  0.9623  0.6954  0.2500 
O:  0.7500  0.5028  0.0759 
Na:  0.2500  0.7500  0.5000 
O:  0.5377  0.6954  0.2500 
O:  0.7500  0.5028  0.4241 
O:  0.5377  0.8046  0.7500 
O:  0.7500  0.9972  0.5759 
Atom type 

We have listed here the reduced coordinates of all the atoms in the primitive unit cell.
It is enough to know only the position of the atoms from the assymetrical unit cell and then use the symmetry to build the whole crystal structure.

Visualization of the crystal structure: 

Size:

  
Nx:  Ny:  Nz:    
You can define the size of the supercell to be displayed in the jmol panel as integer translations along the three crys­tallo­gra­phic axis.
Please note that the structure is represented using the pri­mi­tive cell, and not the conventional one.
     

Powder Raman 

Powder Raman spectrum

The intensity of the Raman peaks is computed within the density-functional perturbation theory. The intensity depends on the temperature (for now fixed at 300K), frequency of the input laser (for now fixed at 21834 cm-1, frequency of the phonon mode and the Raman tensor. The Raman tensor represents the derivative of the dielectric tensor during the atomic displacement that corresponds to the phonon vibration. The Raman tensor is related to the polarizability of a specific phonon mode.

Horizontal:
Xmin:
Xmax:
Vertical:
Ymin:
Ymax:
 
Choose the polarization of the lasers.
I ∥ 
I ⊥ 
I Total 

Data about the phonon modes

Frequency of the transverse (TO) and longitudinal (LO) phonon modes in the zone-center. The longitudinal modes are computed along the three cartesian directions. You can visualize the atomic displacement pattern corresponding to each phonon by clicking on the appropriate cell in the table below.

1
0
0
0
0
2
0
0
0
0
3
0
0
0
0
4
19
19
19
19
5
54
54
54
54
6
56
58
56
56
7
58
65
58
58
8
65
67
65
65
2.831e+37
0.0
3.893e+37
0.0
6.725e+37
0.1
9
67
82
67
67
5.830e+38
0.4
8.017e+38
0.6
1.385e+39
1.0
10
83
83
83
83
11
83
83
83
83
12
89
89
89
89
13
95
95
95
95
14
99
99
99
99
15
100
100
100
100
16
101
102
101
101
17
102
110
102
102
1.145e+39
0.9
1.574e+39
1.2
2.719e+39
2.0
18
110
114
110
110
19
114
122
114
114
20
122
125
122
122
1.970e+38
0.1
1.450e+38
0.1
3.420e+38
0.3
21
125
125
125
126
22
129
129
129
129
23
135
135
135
135
24
139
139
139
139
25
140
140
140
140
26
141
141
141
141
2.192e+37
0.0
3.013e+37
0.0
5.205e+37
0.0
27
146
146
146
146
28
153
153
153
153
2.446e+38
0.2
3.364e+38
0.3
5.810e+38
0.4
29
154
154
154
154
30
157
157
157
157
7.032e+38
0.5
3.834e+38
0.3
1.087e+39
0.8
31
162
162
162
162
32
162
163
162
163
33
163
163
163
163
34
163
164
164
164
35
164
166
166
166
36
166
168
168
168
37
168
178
178
174
38
178
205
191
178
39
205
207
205
207
40
207
207
207
207
41
207
212
209
212
42
212
214
212
212
43
214
214
214
214
44
214
223
214
223
45
223
225
225
225
46
225
227
227
227
47
227
244
246
246
8.246e+37
0.1
1.134e+38
0.1
1.958e+38
0.1
48
246
246
277
264
49
418
418
418
418
50
425
425
425
425
51
434
434
434
434
6.107e+39
4.6
8.397e+39
6.3
1.450e+40
10.8
52
442
442
442
442
53
447
447
447
447
4.134e+39
3.1
3.021e+39
2.3
7.155e+39
5.3
54
449
449
449
449
55
457
457
457
457
56
459
459
459
459
57
581
581
581
581
58
582
586
582
582
59
586
590
586
586
4.845e+39
3.6
6.662e+39
5.0
1.151e+40
8.6
60
590
590
590
590
61
595
595
595
600
62
600
600
600
605
63
605
605
605
607
64
607
607
611
611
65
611
611
611
611
3.133e+39
2.3
4.307e+39
3.2
7.440e+39
5.5
66
611
611
612
611
67
612
612
620
612
3.413e+39
2.5
2.531e+39
1.9
5.943e+39
4.4
68
620
620
621
620
69
960
960
961
960
70
961
961
963
961
1.338e+41
99.8
2.581e+38
0.2
1.341e+41
100.0
71
963
963
963
963
72
964
964
964
964
73
1044
1044
1044
1044
6.005e+39
4.5
8.257e+39
6.2
1.426e+40
10.6
74
1051
1051
1051
1051
75
1066
1073
1066
1066
76
1073
1105
1073
1073
77
1105
1113
1105
1105
9.447e+39
7.0
3.951e+39
2.9
1.340e+40
10.0
78
1113
1113
1113
1113
79
1113
1117
1117
1117
80
1117
1149
1151
1151
81
1151
1151
1165
1165
82
1165
1165
1166
1166
83
1166
1166
1175
1175
84
1175
1175
1191
1197
7.155e+39
5.3
9.838e+39
7.3
1.699e+40
12.7
No.  Char.  ω TO  ω LOx  ω LOy  ω LOz  I ∥  I ⊥  I Total 
You can define the size of the supercell for the visualization of the vibration.
Nx: 
Ny: 
Nz: 
Normalized
Raw
Options for intensity.