-    SODIUM HYDROGEN SULFATE     -    NaHSO4

Theoretical atomic positions and lattice parameters at experimental volum from ICSD database; code 1436 

Crystal Structure 


Because of the translational symmetry all the calculations are performed in the primitive unit cell and not in the conventional unit cell. The following information regarding the structure is given with respect to this primitive unit cell, which sometimes can take an unintuitive shape.

Symmetry (experimental): 

Space group:  14  P12_1/n1 
Lattice parameters (Å):  8.7590  7.5000  5.1470 
Angles (°):  90.0  99.49  90.0 

Symmetry (theoretical): 

Space group:  14  P12_1/n1 
Lattice parameters (Å):  8.6907  7.6666  5.0978 
Angles (°):  90  100.93  90 

Cell contents: 

Number of atoms:  28 
Number of atom types: 
Chemical composition: 

Atomic positions (theoretical):

Na:  0.2025  0.5014  0.2115 
S:  0.4393  0.2806  0.8433 
O:  0.3389  0.2534  0.0374 
O:  0.5977  0.3379  0.9716 
O:  0.3675  0.4353  0.6596 
O:  0.4476  0.1347  0.6674 
H:  0.3772  0.5441  0.7824 
Na:  0.2975  0.0014  0.2885 
S:  0.0607  0.7806  0.6567 
O:  0.1611  0.7534  0.4626 
O:  0.9023  0.8379  0.5284 
O:  0.1325  0.9353  0.8404 
O:  0.0524  0.6347  0.8326 
H:  0.1228  0.0441  0.7176 
Na:  0.7975  0.4986  0.7885 
S:  0.5607  0.7194  0.1567 
O:  0.6611  0.7466  0.9626 
O:  0.4023  0.6621  0.0284 
O:  0.6325  0.5647  0.3404 
O:  0.5524  0.8653  0.3326 
H:  0.6228  0.4559  0.2176 
Na:  0.7025  0.9986  0.7115 
S:  0.9393  0.2194  0.3433 
O:  0.8389  0.2466  0.5374 
O:  0.0977  0.1621  0.4716 
O:  0.8675  0.0647  0.1596 
O:  0.9476  0.3653  0.1674 
H:  0.8772  0.9559  0.2824 
Atom type 

We have listed here the reduced coordinates of all the atoms in the primitive unit cell.
It is enough to know only the position of the atoms from the assymetrical unit cell and then use the symmetry to build the whole crystal structure.

Visualization of the crystal structure: 

Size:

  
Nx:  Ny:  Nz:    
You can define the size of the supercell to be displayed in the jmol panel as integer translations along the three crys­tallo­gra­phic axis.
Please note that the structure is represented using the pri­mi­tive cell, and not the conventional one.
     

Powder Raman 

Powder Raman spectrum

The intensity of the Raman peaks is computed within the density-functional perturbation theory. The intensity depends on the temperature (for now fixed at 300K), frequency of the input laser (for now fixed at 21834 cm-1, frequency of the phonon mode and the Raman tensor. The Raman tensor represents the derivative of the dielectric tensor during the atomic displacement that corresponds to the phonon vibration. The Raman tensor is related to the polarizability of a specific phonon mode.

Horizontal:
Xmin:
Xmax:
Vertical:
Ymin:
Ymax:
 
Choose the polarization of the lasers.
I ∥ 
I ⊥ 
I Total 

Data about the phonon modes

Frequency of the transverse (TO) and longitudinal (LO) phonon modes in the zone-center. The longitudinal modes are computed along the three cartesian directions. You can visualize the atomic displacement pattern corresponding to each phonon by clicking on the appropriate cell in the table below.

1
Ac
0
0
0
0
2
Ac
0
0
0
0
3
Ac
0
0
0
0
4
Bg
70
70
70
70
2.645e+38
0.2
3.474e+38
0.3
6.119e+38
0.5
5
Ag
71
71
71
71
2.266e+39
2.0
1.763e+39
1.5
4.029e+39
3.5
6
Au
73
73
73
73
7
Bu
79
79
79
79
8
Ag
85
85
85
85
3.049e+39
2.6
1.968e+39
1.7
5.017e+39
4.3
9
Ag
99
99
99
99
9.841e+37
0.1
7.081e+37
0.1
1.692e+38
0.1
10
Bg
100
100
100
100
1.793e+39
1.6
2.308e+39
2.0
4.101e+39
3.5
11
Au
102
102
104
102
12
Au
108
108
108
108
13
Bu
109
109
109
110
14
Bg
110
110
110
111
2.384e+38
0.2
3.278e+38
0.3
5.661e+38
0.5
15
Ag
113
113
113
113
1.182e+39
1.0
6.965e+37
0.1
1.251e+39
1.1
16
Au
123
123
125
123
17
Bu
126
126
126
127
18
Au
129
129
130
129
19
Bg
134
134
134
134
6.417e+38
0.6
6.821e+38
0.6
1.324e+39
1.1
20
Ag
137
137
137
137
1.334e+39
1.2
2.670e+38
0.2
1.601e+39
1.4
21
Au
142
142
147
142
22
Bg
147
147
149
147
7.082e+38
0.6
9.330e+38
0.8
1.641e+39
1.4
23
Ag
149
149
152
149
1.108e+38
0.1
7.697e+37
0.1
1.878e+38
0.2
24
Bu
154
156
154
156
25
Bg
156
156
156
156
1.119e+38
0.1
1.220e+38
0.1
2.339e+38
0.2
26
Ag
156
158
156
156
3.995e+38
0.3
2.180e+38
0.2
6.175e+38
0.5
27
Au
160
160
161
160
28
Bu
161
166
168
167
29
Bu
168
173
173
173
30
Ag
173
180
180
180
1.617e+37
0.0
1.211e+37
0.0
2.828e+37
0.0
31
Bg
180
197
187
197
2.440e+38
0.2
3.746e+38
0.3
6.186e+38
0.5
32
Bg
197
207
197
209
3.150e+37
0.0
3.394e+37
0.0
6.544e+37
0.1
33
Ag
224
224
224
224
1.011e+39
0.9
2.575e+38
0.2
1.268e+39
1.1
34
Bg
231
231
231
231
4.128e+38
0.4
5.157e+38
0.4
9.285e+38
0.8
35
Au
255
255
263
255
36
Bu
264
270
264
270
37
Bu
406
411
406
409
38
Bg
412
412
412
412
3.107e+39
2.7
3.448e+39
3.0
6.555e+39
5.7
39
Au
415
415
415
415
2.556e+39
2.2
1.936e+39
1.7
4.492e+39
3.9
40
Ag
415
415
417
415
3.265e+39
2.8
2.473e+39
2.1
5.738e+39
5.0
41
Bg
417
417
417
417
3.516e+39
3.0
5.430e+39
4.7
8.946e+39
7.7
42
Ag
422
422
422
422
4.300e+39
3.7
3.220e+39
2.8
7.520e+39
6.5
43
Bu
451
454
451
455
44
Au
456
456
466
456
45
Ag
531
531
531
531
6.148e+39
5.3
4.816e+39
4.2
1.096e+40
9.5
46
Bg
542
542
542
542
2.678e+39
2.3
4.355e+39
3.8
7.033e+39
6.1
47
Bu
560
560
560
563
48
Au
563
563
563
563
49
Au
564
564
566
564
50
Ag
566
566
568
566
7.434e+39
6.4
6.304e+39
5.5
1.374e+40
11.9
51
Bu
568
568
572
569
52
Bg
574
574
574
574
1.868e+39
1.6
2.309e+39
2.0
4.176e+39
3.6
53
Bu
596
600
596
596
54
Au
600
603
603
600
55
Ag
603
603
603
603
4.924e+39
4.3
1.691e+39
1.5
6.615e+39
5.7
56
Bg
603
604
604
603
6.387e+39
5.5
7.370e+39
6.4
1.376e+40
11.9
57
Ag
842
842
842
842
2.137e+40
18.5
2.429e+38
0.2
2.161e+40
18.7
58
Au
844
844
855
844
59
Bu
855
856
861
861
60
Bg
861
861
873
861
3.320e+39
2.9
3.663e+39
3.2
6.982e+39
6.0
61
Ag
946
946
946
946
8.549e+39
7.4
1.159e+39
1.0
9.708e+39
8.4
62
Bg
948
948
948
948
3.771e+38
0.3
5.740e+38
0.5
9.510e+38
0.8
63
Au
950
950
950
950
64
Bu
950
957
950
950
65
Ag
981
981
981
981
1.149e+41
99.4
7.482e+38
0.6
1.157e+41
100.0
66
Bg
991
991
991
991
5.837e+39
5.0
6.734e+39
5.8
1.257e+40
10.9
67
Bu
1047
1047
1047
1047
68
Au
1047
1054
1060
1062
69
Bu
1123
1136
1123
1131
70
Ag
1136
1174
1136
1136
2.316e+40
20.0
6.549e+39
5.7
2.971e+40
25.7
71
Bg
1180
1180
1180
1180
5.057e+37
0.0
5.448e+37
0.0
1.051e+38
0.1
72
Au
1187
1187
1216
1187
73
Bu
1216
1224
1222
1224
74
Ag
1224
1229
1224
1228
5.542e+39
4.8
2.236e+39
1.9
7.778e+39
6.7
75
Bg
1229
1237
1229
1229
3.653e+39
3.2
6.142e+39
5.3
9.794e+39
8.5
76
Au
1237
1246
1251
1237
77
Au
1304
1304
1307
1304
78
Bu
1319
1320
1319
1358
79
Ag
1358
1358
1358
1370
2.850e+39
2.5
2.497e+39
2.2
5.347e+39
4.6
80
Bg
1370
1370
1370
1372
3.737e+39
3.2
4.382e+39
3.8
8.118e+39
7.0
81
Ag
2545
2545
2545
2545
6.767e+40
58.5
1.024e+40
8.8
7.790e+40
67.3
82
Bg
2557
2557
2557
2557
1.193e+40
10.3
1.597e+40
13.8
2.789e+40
24.1
83
Au
2617
2617
2666
2617
84
Bu
2666
2667
2709
2705
No.  Char.  ω TO  ω LOx  ω LOy  ω LOz  I ∥  I ⊥  I Total 
You can define the size of the supercell for the visualization of the vibration.
Nx: 
Ny: 
Nz: 
Normalized
Raw
Options for intensity.