-    Na2S2O4     -    Na2S2O4

Theoretical atomic positions and lattice parameters at experimental volum from ICSD database; code 16646 

Crystal Structure 


Because of the translational symmetry all the calculations are performed in the primitive unit cell and not in the conventional unit cell. The following information regarding the structure is given with respect to this primitive unit cell, which sometimes can take an unintuitive shape.

Symmetry (experimental): 

Space group:  13  P1_2/c_1 
Lattice parameters (Å):  6.4040  6.5590  6.5860 
Angles (°):  90.0  119.51  90.0 

Symmetry (theoretical): 

Space group:  13  P1_2/c_1 
Lattice parameters (Å):  6.3068  6.7257  6.4729 
Angles (°):  90  118.73  90 

Cell contents: 

Number of atoms:  16 
Number of atom types: 
Chemical composition: 

Atomic positions (theoretical):

S:  0.1917  0.3342  0.9285 
Na:  0.2647  0.8547  0.9765 
O:  0.3166  0.1772  0.8566 
O:  0.1099  0.2407  0.0893 
S:  0.8083  0.3342  0.5715 
Na:  0.7353  0.8547  0.5235 
O:  0.6834  0.1772  0.6434 
O:  0.8901  0.2407  0.4107 
S:  0.8083  0.6658  0.0715 
Na:  0.7353  0.1453  0.0235 
O:  0.6834  0.8228  0.1434 
O:  0.8901  0.7593  0.9107 
S:  0.1917  0.6658  0.4285 
Na:  0.2647  0.1453  0.4765 
O:  0.3166  0.8228  0.3566 
O:  0.1099  0.7593  0.5893 
Atom type 

We have listed here the reduced coordinates of all the atoms in the primitive unit cell.
It is enough to know only the position of the atoms from the assymetrical unit cell and then use the symmetry to build the whole crystal structure.

Visualization of the crystal structure: 

Size:

  
Nx:  Ny:  Nz:    
You can define the size of the supercell to be displayed in the jmol panel as integer translations along the three crys­tallo­gra­phic axis.
Please note that the structure is represented using the pri­mi­tive cell, and not the conventional one.
     

Powder Raman 

Powder Raman spectrum

The intensity of the Raman peaks is computed within the density-functional perturbation theory. The intensity depends on the temperature (for now fixed at 300K), frequency of the input laser (for now fixed at 21834 cm-1, frequency of the phonon mode and the Raman tensor. The Raman tensor represents the derivative of the dielectric tensor during the atomic displacement that corresponds to the phonon vibration. The Raman tensor is related to the polarizability of a specific phonon mode.

Horizontal:
Xmin:
Xmax:
Vertical:
Ymin:
Ymax:
 
Choose the polarization of the lasers.
I ∥ 
I ⊥ 
I Total 

Data about the phonon modes

Frequency of the transverse (TO) and longitudinal (LO) phonon modes in the zone-center. The longitudinal modes are computed along the three cartesian directions. You can visualize the atomic displacement pattern corresponding to each phonon by clicking on the appropriate cell in the table below.

1
Ac
0
0
0
0
2
Ac
0
0
0
0
3
Ac
0
0
0
0
4
Bg
4
4
4
4
5
Bg
64
64
64
64
1.437e+40
1.0
1.722e+40
1.2
3.159e+40
2.3
6
Bu
70
79
70
70
7
Ag
82
82
82
82
1.711e+40
1.2
1.892e+40
1.4
3.603e+40
2.6
8
Bg
88
88
88
88
3.363e+40
2.4
4.038e+40
2.9
7.401e+40
5.3
9
Au
89
89
98
89
10
Bu
98
98
105
99
11
Bg
105
105
117
105
1.604e+39
0.1
1.721e+39
0.1
3.325e+39
0.2
12
Au
130
130
131
130
13
Ag
135
135
135
135
6.934e+40
5.0
1.965e+40
1.4
8.898e+40
6.4
14
Ag
141
141
141
141
3.283e+40
2.4
2.342e+40
1.7
5.625e+40
4.1
15
Ag
157
157
157
157
1.355e+40
1.0
5.260e+39
0.4
1.881e+40
1.4
16
Bu
158
159
158
158
17
Au
165
165
171
165
18
Bg
171
171
172
171
5.992e+39
0.4
6.831e+39
0.5
1.282e+40
0.9
19
Ag
183
183
183
183
1.689e+41
12.2
7.325e+40
5.3
2.421e+41
17.4
20
Bu
201
202
201
203
21
Bg
203
203
203
206
1.831e+39
0.1
2.223e+39
0.2
4.054e+39
0.3
22
Au
206
206
225
219
23
Au
225
225
230
225
24
Bu
230
239
239
237
25
Bg
239
240
240
239
8.326e+38
0.1
1.403e+39
0.1
2.236e+39
0.2
26
Ag
240
253
248
240
1.472e+40
1.1
1.036e+40
0.7
2.508e+40
1.8
27
Bu
260
263
260
262
28
Au
263
264
264
263
29
Bg
264
264
264
264
5.376e+39
0.4
6.182e+39
0.4
1.156e+40
0.8
30
Ag
264
271
264
264
5.000e+41
36.0
2.063e+41
14.9
7.064e+41
50.9
31
Ag
292
292
292
292
1.063e+41
7.7
5.166e+40
3.7
1.580e+41
11.4
32
Au
293
293
294
293
33
Ag
369
369
369
369
9.136e+41
65.8
4.740e+41
34.2
1.388e+42
100.0
34
Au
371
371
372
371
35
Bu
406
406
406
406
36
Bg
406
411
406
420
6.333e+39
0.5
7.897e+39
0.6
1.423e+40
1.0
37
Au
485
485
487
485
38
Ag
487
487
496
487
1.234e+40
0.9
9.410e+39
0.7
2.175e+40
1.6
39
Bu
523
523
523
523
40
Bg
523
525
523
523
2.738e+39
0.2
3.339e+39
0.2
6.077e+39
0.4
41
Bu
902
902
902
902
42
Bg
902
916
902
923
1.002e+40
0.7
1.308e+40
0.9
2.309e+40
1.7
43
Au
996
996
1013
996
44
Ag
1013
1013
1019
1013
7.040e+40
5.1
2.237e+40
1.6
9.277e+40
6.7
45
Bu
1029
1041
1029
1041
46
Ag
1041
1053
1041
1053
6.923e+40
5.0
2.856e+40
2.1
9.779e+40
7.0
47
Au
1053
1058
1056
1058
48
Bg
1058
1081
1058
1069
1.749e+40
1.3
2.802e+40
2.0
4.551e+40
3.3
No.  Char.  ω TO  ω LOx  ω LOy  ω LOz  I ∥  I ⊥  I Total 
You can define the size of the supercell for the visualization of the vibration.
Nx: 
Ny: 
Nz: 
Normalized
Raw
Options for intensity.