-    Na2S2O7     -    Na2S2O7

Theoretical atomic positions and lattice parameters at experimental volum from ICSD database; code 413049 

Crystal Structure 


Because of the translational symmetry all the calculations are performed in the primitive unit cell and not in the conventional unit cell. The following information regarding the structure is given with respect to this primitive unit cell, which sometimes can take an unintuitive shape.

Symmetry (experimental): 

Space group:  P-1 
Lattice parameters (Å):  6.7702  6.7975  6.7292 
Angles (°):  116.77  96.089  84.00 

Symmetry (theoretical): 

Space group:  P-1 
Lattice parameters (Å):  6.7920  6.8454  6.6806 
Angles (°):  116.74  97.13  82.68 

Cell contents: 

Number of atoms:  22 
Number of atom types: 
Chemical composition: 

Atomic positions (theoretical):

Na:  0.1485  0.8376  0.7804 
Na:  0.6683  0.7559  0.3834 
S:  0.1605  0.7575  0.2701 
S:  0.3586  0.3185  0.1436 
O:  0.0133  0.7324  0.3945 
O:  0.6653  0.1478  0.5861 
O:  0.9176  0.1447  0.8774 
O:  0.7664  0.4854  0.9118 
O:  0.6475  0.8575  0.0814 
O:  0.2459  0.2947  0.2986 
O:  0.4459  0.6052  0.7674 
Na:  0.8515  0.1624  0.2196 
Na:  0.3317  0.2441  0.6166 
S:  0.8395  0.2425  0.7299 
S:  0.6414  0.6815  0.8564 
O:  0.9867  0.2676  0.6055 
O:  0.3347  0.8522  0.4139 
O:  0.0824  0.8553  0.1226 
O:  0.2336  0.5146  0.0882 
O:  0.3525  0.1425  0.9186 
S:  0.7541  0.7053  0.7014 
O:  0.5541  0.3948  0.2326 
Atom type 

We have listed here the reduced coordinates of all the atoms in the primitive unit cell.
It is enough to know only the position of the atoms from the assymetrical unit cell and then use the symmetry to build the whole crystal structure.

Visualization of the crystal structure: 

Size:

Nx:  Ny:  Nz: 
You can define the size of the supercell to be displayed in the jmol panel as integer translations along the three crys­tallo­gra­phic axis.
Please note that the structure is represented using the pri­mi­tive cell, and not the conventional one.
     

Powder Raman 

Powder Raman spectrum

The intensity of the Raman peaks is computed within the density-functional perturbation theory. The intensity depends on the temperature (for now fixed at 300K), frequency of the input laser (for now fixed at 21834 cm-1, frequency of the phonon mode and the Raman tensor. The Raman tensor represents the derivative of the dielectric tensor during the atomic displacement that corresponds to the phonon vibration. The Raman tensor is related to the polarizability of a specific phonon mode.

Choose the polarization of the lasers.

I ∥ 
I ⊥ 
I Total 
Horizontal:
Xmin:
Xmax:
Vertical:
Ymin:
Ymax:
 

Data about the phonon modes

Frequency of the transverse (TO) and longitudinal (LO) phonon modes in the zone-center. The longitudinal modes are computed along the three cartesian directions. You can visualize the atomic displacement pattern corresponding to each phonon by clicking on the appropriate cell in the table below.

1
0
0
0
0
2
0
0
0
0
3
0
0
0
0
4
64
64
65
65
5
68
68
68
68
9.712e+38
0.8
5.603e+38
0.5
1.531e+39
1.3
6
75
75
75
75
2.221e+39
1.8
1.321e+39
1.1
3.542e+39
2.9
7
90
90
90
90
3.983e+38
0.3
1.665e+38
0.1
5.648e+38
0.5
8
93
93
94
93
9
94
94
96
94
4.279e+38
0.4
2.677e+38
0.2
6.956e+38
0.6
10
100
100
100
100
11
100
106
106
100
1.568e+39
1.3
4.582e+38
0.4
2.026e+39
1.7
12
106
109
106
106
1.282e+39
1.0
1.212e+39
1.0
2.494e+39
2.0
13
111
111
111
111
5.114e+38
0.4
4.196e+38
0.3
9.310e+38
0.8
14
118
118
118
118
3.001e+38
0.2
2.545e+38
0.2
5.546e+38
0.5
15
121
122
124
126
16
143
144
144
144
17
147
149
147
148
18
149
149
149
149
1.930e+38
0.2
1.496e+38
0.1
3.426e+38
0.3
19
152
155
153
155
20
155
157
155
155
1.127e+39
0.9
5.079e+38
0.4
1.635e+39
1.3
21
175
177
177
177
22
177
177
179
178
1.287e+39
1.1
1.475e+38
0.1
1.435e+39
1.2
23
184
184
187
187
24
187
188
188
188
25
188
195
196
196
6.428e+38
0.5
2.100e+38
0.2
8.529e+38
0.7
26
196
196
197
198
3.034e+39
2.5
7.961e+38
0.7
3.830e+39
3.1
27
205
205
205
205
28
206
206
219
226
5.818e+38
0.5
5.072e+38
0.4
1.089e+39
0.9
29
233
238
234
238
30
238
258
238
244
6.164e+38
0.5
4.346e+38
0.4
1.051e+39
0.9
31
315
315
315
315
1.182e+40
9.7
1.211e+40
9.9
2.393e+40
19.6
32
318
318
318
318
33
330
330
330
330
34
336
336
336
336
2.364e+40
19.3
8.751e+39
7.2
3.239e+40
26.5
35
342
342
342
342
36
342
343
343
342
1.319e+40
10.8
1.153e+40
9.4
2.472e+40
20.2
37
439
440
439
439
38
441
441
441
441
5.281e+38
0.4
8.226e+38
0.7
1.351e+39
1.1
39
495
495
495
497
40
497
497
497
499
1.616e+40
13.2
7.840e+39
6.4
2.400e+40
19.6
41
536
536
536
536
3.768e+39
3.1
2.690e+39
2.2
6.458e+39
5.3
42
537
541
541
541
43
541
543
543
543
44
543
548
554
546
2.220e+39
1.8
2.824e+39
2.3
5.045e+39
4.1
45
554
555
559
554
46
559
559
568
559
1.481e+39
1.2
1.414e+39
1.2
2.895e+39
2.4
47
569
585
585
569
48
585
586
602
585
5.528e+39
4.5
6.608e+39
5.4
1.214e+40
9.9
49
628
628
628
630
50
631
631
631
631
1.717e+39
1.4
1.221e+39
1.0
2.938e+39
2.4
51
707
708
713
711
52
720
720
720
720
3.914e+40
32.0
7.941e+38
0.6
3.993e+40
32.7
53
760
761
761
761
54
761
769
819
771
2.214e+40
18.1
5.425e+39
4.4
2.756e+40
22.5
55
1030
1030
1030
1030
7.587e+38
0.6
2.087e+38
0.2
9.674e+38
0.8
56
1030
1032
1041
1031
57
1080
1081
1080
1083
58
1086
1086
1086
1086
1.218e+41
99.6
4.328e+38
0.4
1.223e+41
100.0
59
1232
1235
1234
1232
60
1235
1248
1235
1235
2.915e+39
2.4
2.916e+39
2.4
5.831e+39
4.8
61
1248
1250
1248
1248
4.944e+39
4.0
6.176e+39
5.1
1.112e+40
9.1
62
1256
1265
1257
1258
63
1265
1267
1280
1279
64
1280
1280
1281
1280
6.560e+39
5.4
4.792e+39
3.9
1.135e+40
9.3
65
1282
1285
1285
1285
66
1285
1320
1287
1326
6.284e+39
5.1
9.189e+39
7.5
1.547e+40
12.7
No.  Char.  ω TO  ω LOx  ω LOy  ω LOz  I ∥  I ⊥  I Total 

You can define the size of the supercell for the visualization of the vibration.

Nx: 
Ny: 
Nz: 
Normalized
Raw
Options for intensity.