-    Na2Mg(SO3)2(H2O)2     -    Na2Mg(SO3)2(H2O)2

The crystal structure is fully relaxed (both unit cell parameters and atomic positions under symmetry constraints) starting from an experimental structure similar to the one reported in ICSD database; code 35767 

Crystal Structure 


Because of the translational symmetry all the calculations are performed in the primitive unit cell and not in the conventional unit cell. The following information regarding the structure is given with respect to this primitive unit cell, which sometimes can take an unintuitive shape.

Symmetry (experimental): 

Space group:  P-1 
Lattice parameters (Å):  7.5240  5.9030  5.1780 
Angles (°):  106.25  109.80  101.49 

Symmetry (theoretical): 

Space group:  P-1 
Lattice parameters (Å):  7.3408  5.7063  5.0861 
Angles (°):  106.28  110.42  102.19 

Cell contents: 

Number of atoms:  17 
Number of atom types: 
Chemical composition: 

Atomic positions (theoretical):

Mg:  0.5000  0.5000  0.5000 
Na:  0.6738  0.0034  0.3473 
S:  0.2564  0.6012  0.9187 
O:  0.3584  0.7038  0.2659 
O:  0.1386  0.7863  0.8495 
O:  0.4380  0.6884  0.8435 
O:  0.2304  0.1973  0.3198 
H:  0.0973  0.2354  0.2700 
H:  0.2027  0.0429  0.1358 
Na:  0.3262  0.9966  0.6527 
S:  0.7436  0.3988  0.0813 
O:  0.6416  0.2962  0.7341 
O:  0.8614  0.2137  0.1505 
O:  0.5620  0.3116  0.1565 
O:  0.7696  0.8027  0.6802 
H:  0.9027  0.7646  0.7300 
H:  0.7973  0.9571  0.8642 
Atom type 

We have listed here the reduced coordinates of all the atoms in the primitive unit cell.
It is enough to know only the position of the atoms from the assymetrical unit cell and then use the symmetry to build the whole crystal structure.

Visualization of the crystal structure: 

Size:

Nx:  Ny:  Nz: 
You can define the size of the supercell to be displayed in the jmol panel as integer translations along the three crys­tallo­gra­phic axis.
Please note that the structure is represented using the pri­mi­tive cell, and not the conventional one.
     

Powder Raman 

Powder Raman spectrum

The intensity of the Raman peaks is computed within the density-functional perturbation theory. The intensity depends on the temperature (for now fixed at 300K), frequency of the input laser (for now fixed at 21834 cm-1, frequency of the phonon mode and the Raman tensor. The Raman tensor represents the derivative of the dielectric tensor during the atomic displacement that corresponds to the phonon vibration. The Raman tensor is related to the polarizability of a specific phonon mode.

Choose the polarization of the lasers.

I ∥ 
I ⊥ 
I Total 
Horizontal:
Xmin:
Xmax:
Vertical:
Ymin:
Ymax:
 

Data about the phonon modes

Frequency of the transverse (TO) and longitudinal (LO) phonon modes in the zone-center. The longitudinal modes are computed along the three cartesian directions. You can visualize the atomic displacement pattern corresponding to each phonon by clicking on the appropriate cell in the table below.

1
Ac
0
0
0
0
2
Ac
0
0
0
0
3
Ac
0
0
0
0
4
Ag
117
117
117
117
1.730e+39
1.1
7.312e+38
0.5
2.462e+39
1.5
5
Ag
126
126
126
126
3.674e+39
2.3
1.287e+39
0.8
4.961e+39
3.1
6
Au
143
144
144
144
7
Ag
144
150
147
144
2.365e+39
1.5
1.201e+39
0.7
3.566e+39
2.2
8
Ag
163
163
163
163
5.639e+39
3.5
4.313e+38
0.3
6.070e+39
3.8
9
Au
171
171
173
176
10
Au
181
181
182
182
11
Ag
182
182
184
183
2.646e+39
1.6
1.835e+39
1.1
4.482e+39
2.8
12
Ag
190
190
190
190
1.067e+39
0.7
8.512e+38
0.5
1.918e+39
1.2
13
Au
195
196
196
195
14
Ag
209
209
209
209
6.273e+39
3.9
3.275e+38
0.2
6.600e+39
4.1
15
Au
214
214
218
214
16
Au
243
250
244
251
17
Ag
251
251
251
253
1.107e+39
0.7
1.117e+39
0.7
2.225e+39
1.4
18
Ag
260
260
260
260
8.391e+38
0.5
9.427e+38
0.6
1.782e+39
1.1
19
Au
262
263
264
262
20
Au
298
298
301
298
21
Ag
301
301
306
301
1.945e+39
1.2
5.922e+38
0.4
2.537e+39
1.6
22
Ag
306
306
306
306
8.241e+39
5.1
5.071e+39
3.1
1.331e+40
8.2
23
Au
310
314
337
318
24
Au
337
340
342
361
25
Au
363
396
364
386
26
Ag
400
400
400
400
1.539e+39
1.0
1.830e+39
1.1
3.370e+39
2.1
27
Au
475
475
481
475
28
Ag
497
497
497
497
6.525e+39
4.0
8.807e+39
5.4
1.533e+40
9.5
29
Ag
504
504
504
504
4.232e+39
2.6
5.459e+39
3.4
9.691e+39
6.0
30
Au
507
507
509
509
31
Au
525
530
525
527
32
Ag
636
636
636
636
1.086e+39
0.7
1.201e+39
0.7
2.286e+39
1.4
33
Au
647
647
661
651
34
Ag
791
791
791
791
4.147e+39
2.6
5.271e+39
3.3
9.418e+39
5.8
35
Au
826
826
827
837
36
Au
871
883
883
871
37
Ag
883
891
886
883
1.399e+40
8.7
1.590e+40
9.8
2.989e+40
18.5
38
Ag
891
904
891
891
4.609e+40
28.5
2.164e+40
13.4
6.774e+40
41.9
39
Au
915
933
927
926
40
Ag
934
934
934
934
2.077e+40
12.8
6.297e+39
3.9
2.706e+40
16.7
41
Au
935
946
935
946
42
Ag
946
960
946
957
6.402e+39
4.0
8.283e+39
5.1
1.469e+40
9.1
43
Au
963
974
974
971
44
Ag
974
983
978
974
7.340e+40
45.4
1.077e+40
6.7
8.417e+40
52.1
45
Au
983
1005
1019
1005
46
Au
1593
1600
1593
1601
47
Ag
1675
1675
1675
1675
2.959e+39
1.8
2.530e+39
1.6
5.489e+39
3.4
48
Ag
2825
2825
2825
2825
6.282e+40
38.9
8.105e+40
50.1
1.439e+41
89.0
49
Au
2902
2907
2939
2938
50
Au
2989
3002
3002
2996
51
Ag
3002
3083
3007
3002
1.329e+41
82.2
2.877e+40
17.8
1.617e+41
100.0
No.  Char.  ω TO  ω LOx  ω LOy  ω LOz  I ∥  I ⊥  I Total 

You can define the size of the supercell for the visualization of the vibration.

Nx: 
Ny: 
Nz: 
Normalized
Raw
Options for intensity.