-    PYRARGYRITE     -    Ag3SbS3

Theoretical atomic positions and lattice parameters at experimental volum from AMCSD 

Crystal Structure 


Because of the translational symmetry all the calculations are performed in the primitive unit cell and not in the conventional unit cell. The following information regarding the structure is given with respect to this primitive unit cell, which sometimes can take an unintuitive shape.

Symmetry (experimental): 

Space group:  161  R3c 
Lattice parameters (Å):  11.0464  11.0464  8.7211 
Angles (°):  90  90  120 

Symmetry (theoretical): 

Space group:  161  R3c 
Lattice parameters (Å):  6.8819  6.8819  6.8819 
Angles (°):  100.49  100.49  100.49 

Cell contents: 

Number of atoms:  14 
Number of atom types: 
Chemical composition: 

Atomic positions (theoretical):

Sb:  0.0115  0.0115  0.0115 
Ag:  0.4476  0.2313  0.9200 
S:  0.6047  0.2523  0.2706 
Ag:  0.2313  0.9200  0.4476 
S:  0.2523  0.2706  0.6047 
Sb:  0.5115  0.5115  0.5115 
Ag:  0.4200  0.7313  0.9476 
S:  0.7706  0.7523  0.1047 
Ag:  0.9200  0.4476  0.2313 
S:  0.2706  0.6047  0.2523 
Ag:  0.7313  0.9476  0.4200 
S:  0.7523  0.1047  0.7706 
Ag:  0.9476  0.4200  0.7313 
S:  0.1047  0.7706  0.7523 
Atom type 

We have listed here the reduced coordinates of all the atoms in the primitive unit cell.
It is enough to know only the position of the atoms from the assymetrical unit cell and then use the symmetry to build the whole crystal structure.

Visualization of the crystal structure: 

Size:

  
Nx:  Ny:  Nz:    
You can define the size of the supercell to be displayed in the jmol panel as integer translations along the three crys­tallo­gra­phic axis.
Please note that the structure is represented using the pri­mi­tive cell, and not the conventional one.
     

Powder Raman 

Powder Raman spectrum

The intensity of the Raman peaks is computed within the density-functional perturbation theory. The intensity depends on the temperature (for now fixed at 300K), frequency of the input laser (for now fixed at 21834 cm-1, frequency of the phonon mode and the Raman tensor. The Raman tensor represents the derivative of the dielectric tensor during the atomic displacement that corresponds to the phonon vibration. The Raman tensor is related to the polarizability of a specific phonon mode.

Horizontal:
Xmin:
Xmax:
Vertical:
Ymin:
Ymax:
 
Choose the polarization of the lasers.
I ∥ 
I ⊥ 
I Total 

Data about the phonon modes

Frequency of the transverse (TO) and longitudinal (LO) phonon modes in the zone-center. The longitudinal modes are computed along the three cartesian directions. You can visualize the atomic displacement pattern corresponding to each phonon by clicking on the appropriate cell in the table below.

1
A2
-12
-12
-12
-12
2
E
-11
-11
-11
-11
3
E
-11
-7
-7
-11
4
Ac
0
0
0
0
5
Ac
0
0
0
0
6
Ac
0
0
0
0
7
E
34
34
34
34
4.122e+40
0.1
4.125e+40
0.1
8.247e+40
0.3
8
E
34
35
35
34
4.122e+40
0.1
6.902e+40
0.2
1.102e+41
0.4
9
E
39
39
39
39
7.371e+41
2.5
1.029e+42
3.5
1.766e+42
6.0
10
E
39
40
40
39
7.371e+41
2.5
1.081e+42
3.7
1.818e+42
6.2
11
A1
40
40
40
41
1.796e+41
0.6
3.711e+39
0.0
1.833e+41
0.6
12
A2
47
47
47
47
13
A1
49
49
49
49
9.655e+42
32.8
2.472e+41
0.8
9.902e+42
33.6
14
E
50
50
50
50
3.415e+41
1.2
5.746e+41
2.0
9.161e+41
3.1
15
E
50
51
51
50
3.415e+41
1.2
3.725e+41
1.3
7.140e+41
2.4
16
A2
54
54
54
54
17
E
63
63
63
63
6.418e+41
2.2
1.050e+42
3.6
1.692e+42
5.7
18
E
63
63
63
63
6.418e+41
2.2
7.923e+41
2.7
1.434e+42
4.9
19
E
92
92
92
92
3.342e+41
1.1
5.603e+41
1.9
8.945e+41
3.0
20
E
92
92
92
92
3.342e+41
1.1
3.471e+41
1.2
6.813e+41
2.3
21
E
109
109
109
109
1.627e+41
0.6
1.345e+41
0.5
2.971e+41
1.0
22
E
109
110
110
109
1.627e+41
0.6
1.901e+41
0.6
3.528e+41
1.2
23
A1
114
114
114
115
3.843e+42
13.0
1.262e+41
0.4
3.969e+42
13.5
24
A2
122
122
122
122
25
A1
200
200
200
200
6.533e+42
22.2
2.903e+41
1.0
6.823e+42
23.2
26
E
241
241
241
241
3.091e+41
1.0
2.893e+41
1.0
5.984e+41
2.0
27
E
241
242
242
241
3.091e+41
1.0
3.279e+41
1.1
6.370e+41
2.2
28
A2
244
244
244
244
29
E
245
245
245
245
7.295e+40
0.2
8.477e+40
0.3
1.577e+41
0.5
30
E
245
249
249
245
7.295e+40
0.2
9.138e+40
0.3
1.643e+41
0.6
31
E
249
249
249
249
2.390e+40
0.1
2.529e+40
0.1
4.920e+40
0.2
32
E
249
257
257
249
2.390e+40
0.1
4.033e+40
0.1
6.423e+40
0.2
33
E
278
278
278
278
1.119e+41
0.4
1.798e+41
0.6
2.918e+41
1.0
34
E
278
278
278
278
1.119e+41
0.4
1.186e+41
0.4
2.306e+41
0.8
35
A2
279
279
279
279
36
A1
287
287
287
289
1.249e+41
0.4
8.488e+40
0.3
2.098e+41
0.7
37
E
296
296
296
296
9.416e+41
3.2
1.564e+42
5.3
2.506e+42
8.5
38
E
296
303
303
296
9.416e+41
3.2
1.119e+42
3.8
2.060e+42
7.0
39
A1
303
305
305
317
2.943e+43
99.9
3.236e+40
0.1
2.946e+43
100.0
40
E
321
321
321
321
4.402e+41
1.5
4.396e+41
1.5
8.799e+41
3.0
41
E
321
325
325
321
4.402e+41
1.5
7.388e+41
2.5
1.179e+42
4.0
42
A2
330
330
330
330
No.  Char.  ω TO  ω LOx  ω LOy  ω LOz  I ∥  I ⊥  I Total 
You can define the size of the supercell for the visualization of the vibration.
Nx: 
Ny: 
Nz: 
Normalized
Raw
Options for intensity.