-    XIMENGINITE     -    BiPO4

Theoretical atomic positions and lattice parameters at experimental volum from AMCSD 

Crystal Structure 


Because of the translational symmetry all the calculations are performed in the primitive unit cell and not in the conventional unit cell. The following information regarding the structure is given with respect to this primitive unit cell, which sometimes can take an unintuitive shape.

Symmetry (experimental): 

Space group:  152  P3_121 
Lattice parameters (Å):  6.9660  6.9660  6.4600 
Angles (°):  90  90  120 

Symmetry (theoretical): 

Space group:  152  P3_121 
Lattice parameters (Å):  7.0020  7.0020  6.3937 
Angles (°):  90  90  120 

Cell contents: 

Number of atoms:  18 
Number of atom types: 
Chemical composition: 

Atomic positions (theoretical):

Bi:  0.0872  0.0872  0.5000 
P:  0.4960  0.0000  0.8333 
O:  0.4428  0.0000  0.3333 
O:  0.3998  0.1614  0.4600 
Bi:  0.6246  0.1207  0.1690 
P:  0.5040  0.5040  0.5000 
O:  0.5572  0.5572  0.0000 
O:  0.7616  0.6002  0.1266 
Bi:  0.4961  0.3754  0.8357 
P:  0.0000  0.4960  0.1667 
O:  0.0000  0.4428  0.6667 
O:  0.1614  0.3998  0.5400 
O:  0.1207  0.6246  0.8310 
O:  0.8386  0.2384  0.7933 
O:  0.8793  0.5039  0.5023 
O:  0.2384  0.8386  0.2067 
O:  0.5039  0.8793  0.4977 
O:  0.6002  0.7616  0.8734 
Atom type 

We have listed here the reduced coordinates of all the atoms in the primitive unit cell.
It is enough to know only the position of the atoms from the assymetrical unit cell and then use the symmetry to build the whole crystal structure.

Visualization of the crystal structure: 

Size:

  
Nx:  Ny:  Nz:    
You can define the size of the supercell to be displayed in the jmol panel as integer translations along the three crys­tallo­gra­phic axis.
Please note that the structure is represented using the pri­mi­tive cell, and not the conventional one.
     

Powder Raman 

Powder Raman spectrum

The intensity of the Raman peaks is computed within the density-functional perturbation theory. The intensity depends on the temperature (for now fixed at 300K), frequency of the input laser (for now fixed at 21834 cm-1, frequency of the phonon mode and the Raman tensor. The Raman tensor represents the derivative of the dielectric tensor during the atomic displacement that corresponds to the phonon vibration. The Raman tensor is related to the polarizability of a specific phonon mode.

Horizontal:
Xmin:
Xmax:
Vertical:
Ymin:
Ymax:
 
Choose the polarization of the lasers.
I ∥ 
I ⊥ 
I Total 

Data about the phonon modes

Frequency of the transverse (TO) and longitudinal (LO) phonon modes in the zone-center. The longitudinal modes are computed along the three cartesian directions. You can visualize the atomic displacement pattern corresponding to each phonon by clicking on the appropriate cell in the table below.

1
Ac
0
0
0
0
2
Ac
0
0
0
0
3
Ac
0
0
0
0
4
E
62
62
62
62
5.109e+39
1.9
6.030e+39
2.2
1.114e+40
4.1
5
E
62
66
66
62
5.109e+39
1.9
8.504e+39
3.1
1.361e+40
5.0
6
A2
71
71
71
79
7
A1
86
86
86
86
2.589e+40
9.4
2.426e+37
0.0
2.591e+40
9.5
8
E
89
89
89
89
1.268e+40
4.6
1.488e+40
5.4
2.756e+40
10.1
9
E
89
90
90
89
1.268e+40
4.6
2.114e+40
7.7
3.382e+40
12.3
10
E
105
105
105
105
1.998e+40
7.3
1.683e+40
6.1
3.681e+40
13.4
11
E
105
112
112
105
1.998e+40
7.3
2.304e+40
8.4
4.302e+40
15.7
12
A1
112
113
113
112
4.282e+40
15.6
3.360e+37
0.0
4.285e+40
15.6
13
A2
113
133
133
114
14
A2
133
138
138
145
15
E
145
145
145
145
9.749e+39
3.6
1.061e+40
3.9
2.036e+40
7.4
16
E
145
163
163
151
9.749e+39
3.6
1.644e+40
6.0
2.619e+40
9.6
17
E
163
163
163
163
1.174e+39
0.4
1.554e+39
0.6
2.728e+39
1.0
18
E
163
178
178
163
1.174e+39
0.4
1.413e+39
0.5
2.587e+39
0.9
19
E
188
188
188
188
5.252e+39
1.9
4.162e+39
1.5
9.414e+39
3.4
20
E
188
191
191
188
5.252e+39
1.9
6.396e+39
2.3
1.165e+40
4.3
21
A2
194
194
194
207
22
E
207
207
207
207
5.380e+39
2.0
5.760e+39
2.1
1.114e+40
4.1
23
E
207
208
208
209
5.380e+39
2.0
5.717e+39
2.1
1.110e+40
4.1
24
A1
209
209
209
238
2.738e+41
99.9
2.114e+38
0.1
2.740e+41
100.0
25
A2
252
252
252
259
26
E
259
259
259
259
8.100e+39
3.0
6.078e+39
2.2
1.418e+40
5.2
27
E
259
309
309
319
8.100e+39
3.0
1.101e+40
4.0
1.910e+40
7.0
28
E
363
363
363
363
2.405e+38
0.1
2.253e+38
0.1
4.658e+38
0.2
29
E
363
364
364
363
2.405e+38
0.1
3.995e+38
0.1
6.400e+38
0.2
30
A1
382
382
382
382
1.307e+41
47.7
4.766e+35
0.0
1.307e+41
47.7
31
A1
427
427
427
427
3.673e+40
13.4
1.527e+39
0.6
3.826e+40
14.0
32
E
454
454
454
454
3.238e+39
1.2
2.429e+39
0.9
5.667e+39
2.1
33
E
454
455
455
454
3.238e+39
1.2
4.428e+39
1.6
7.666e+39
2.8
34
E
514
514
514
514
1.656e+39
0.6
1.963e+39
0.7
3.619e+39
1.3
35
E
514
523
523
514
1.656e+39
0.6
1.801e+39
0.7
3.458e+39
1.3
36
A2
532
532
532
533
37
A1
546
546
546
546
2.248e+40
8.2
2.951e+38
0.1
2.277e+40
8.3
38
E
563
563
563
563
9.561e+38
0.3
7.981e+38
0.3
1.754e+39
0.6
39
E
563
565
565
563
9.561e+38
0.3
1.110e+39
0.4
2.066e+39
0.8
40
E
577
577
577
577
4.239e+39
1.5
3.334e+39
1.2
7.574e+39
2.8
41
E
577
577
577
577
4.239e+39
1.5
6.451e+39
2.4
1.069e+40
3.9
42
A2
579
579
579
612
43
A1
936
936
936
936
8.250e+40
30.1
4.060e+39
1.5
8.656e+40
31.6
44
E
939
939
939
939
9.866e+38
0.4
1.003e+39
0.4
1.990e+39
0.7
45
E
939
940
940
939
9.866e+38
0.4
1.662e+39
0.6
2.648e+39
1.0
46
E
955
955
955
955
7.004e+38
0.3
5.448e+38
0.2
1.245e+39
0.5
47
E
955
968
968
955
7.004e+38
0.3
1.053e+39
0.4
1.754e+39
0.6
48
A1
968
975
975
968
1.596e+40
5.8
5.266e+38
0.2
1.649e+40
6.0
49
A2
975
979
979
975
50
E
979
979
979
979
6.259e+39
2.3
5.019e+39
1.8
1.128e+40
4.1
51
E
979
998
998
979
6.259e+39
2.3
7.527e+39
2.7
1.379e+40
5.0
52
A2
998
1031
1031
1051
53
E
1051
1051
1051
1051
2.558e+40
9.3
1.930e+40
7.0
4.488e+40
16.4
54
E
1051
1091
1091
1117
2.558e+40
9.3
3.654e+40
13.3
6.212e+40
22.7
No.  Char.  ω TO  ω LOx  ω LOy  ω LOz  I ∥  I ⊥  I Total 
You can define the size of the supercell for the visualization of the vibration.
Nx: 
Ny: 
Nz: 
Normalized
Raw
Options for intensity.