-    PUCHERITE     -    BiVO4

Theoretical atomic positions and lattice parameters at experimental volum from AMCSD. Unstable structure. 

Crystal Structure 


Because of the translational symmetry all the calculations are performed in the primitive unit cell and not in the conventional unit cell. The following information regarding the structure is given with respect to this primitive unit cell, which sometimes can take an unintuitive shape.

Symmetry (experimental): 

Space group:  60  Pnca 
Lattice parameters (Å):  5.3190  5.0500  12.0110 
Angles (°):  90  90  90 

Symmetry (theoretical): 

Space group:  60  Pnca 
Lattice parameters (Å):  5.3393  5.0785  11.8982 
Angles (°):  90  90  90 

Cell contents: 

Number of atoms:  24 
Number of atom types: 
Chemical composition: 

Atomic positions (theoretical):

Bi:  0.2500  0.0000  0.1117 
V:  0.2500  0.0000  0.3959 
O:  0.9246  0.7583  0.0315 
O:  0.9539  0.3447  0.1929 
Bi:  0.7500  0.5000  0.3883 
V:  0.7500  0.5000  0.1041 
O:  0.4246  0.7417  0.4685 
O:  0.4539  0.1553  0.3071 
O:  0.5754  0.2417  0.0315 
O:  0.5461  0.6553  0.1929 
O:  0.0754  0.2583  0.4685 
O:  0.0461  0.8447  0.3071 
Bi:  0.7500  0.0000  0.8883 
V:  0.7500  0.0000  0.6041 
O:  0.0754  0.2417  0.9685 
O:  0.0461  0.6553  0.8071 
Bi:  0.2500  0.5000  0.6117 
V:  0.2500  0.5000  0.8959 
O:  0.5754  0.2583  0.5315 
O:  0.5461  0.8447  0.6929 
O:  0.4246  0.7583  0.9685 
O:  0.4539  0.3447  0.8071 
O:  0.9246  0.7417  0.5315 
O:  0.9539  0.1553  0.6929 
Atom type 

We have listed here the reduced coordinates of all the atoms in the primitive unit cell.
It is enough to know only the position of the atoms from the assymetrical unit cell and then use the symmetry to build the whole crystal structure.

Visualization of the crystal structure: 

Size:

  
Nx:  Ny:  Nz:    
You can define the size of the supercell to be displayed in the jmol panel as integer translations along the three crys­tallo­gra­phic axis.
Please note that the structure is represented using the pri­mi­tive cell, and not the conventional one.
     

Powder Raman 

Powder Raman spectrum

The intensity of the Raman peaks is computed within the density-functional perturbation theory. The intensity depends on the temperature (for now fixed at 300K), frequency of the input laser (for now fixed at 21834 cm-1, frequency of the phonon mode and the Raman tensor. The Raman tensor represents the derivative of the dielectric tensor during the atomic displacement that corresponds to the phonon vibration. The Raman tensor is related to the polarizability of a specific phonon mode.

Horizontal:
Xmin:
Xmax:
Vertical:
Ymin:
Ymax:
 
Choose the polarization of the lasers.
I ∥ 
I ⊥ 
I Total 

Data about the phonon modes

Frequency of the transverse (TO) and longitudinal (LO) phonon modes in the zone-center. The longitudinal modes are computed along the three cartesian directions. You can visualize the atomic displacement pattern corresponding to each phonon by clicking on the appropriate cell in the table below.

1
-61
-41
-61
-61
2
-41
-34
-41
-41
3
-34
-21
-34
-34
4
-21
0
0
-21
5
0
0
0
0
6
0
0
0
0
7
0
31
25
0
8
36
36
36
36
6.303e+40
1.5
8.666e+40
2.1
1.497e+41
3.6
9
47
47
47
47
10
54
54
54
54
11
54
60
54
54
3.887e+40
0.9
5.344e+40
1.3
9.231e+40
2.2
12
60
62
62
60
13
62
82
77
82
14
82
83
82
83
9.180e+40
2.2
1.262e+41
3.0
2.180e+41
5.2
15
83
83
83
83
1.136e+42
27.2
2.693e+40
0.6
1.163e+42
27.8
16
83
104
83
104
2.524e+39
0.1
3.470e+39
0.1
5.994e+39
0.1
17
104
119
120
120
18
120
120
129
129
1.904e+39
0.0
2.618e+39
0.1
4.523e+39
0.1
19
129
129
132
137
1.160e+40
0.3
1.595e+40
0.4
2.756e+40
0.7
20
137
137
137
142
21
142
142
148
148
22
148
148
151
151
2.068e+41
4.9
8.080e+40
1.9
2.876e+41
6.9
23
151
153
153
153
24
153
153
164
169
25
169
169
169
169
3.095e+40
0.7
4.256e+40
1.0
7.351e+40
1.8
26
169
169
169
169
2.677e+39
0.1
3.681e+39
0.1
6.358e+39
0.2
27
169
170
169
170
28
170
172
170
176
29
183
183
183
183
5.160e+41
12.3
1.545e+41
3.7
6.704e+41
16.0
30
184
184
191
184
31
191
201
201
191
32
201
201
204
201
1.097e+38
0.0
1.509e+38
0.0
2.606e+38
0.0
33
204
204
230
213
34
230
230
242
230
9.176e+38
0.0
1.262e+39
0.0
2.179e+39
0.1
35
250
272
250
250
36
272
280
272
272
37
280
280
280
280
8.270e+38
0.0
1.137e+39
0.0
1.964e+39
0.0
38
280
286
280
280
39
286
297
286
297
40
297
303
297
297
3.164e+40
0.8
4.351e+40
1.0
7.515e+40
1.8
41
303
304
303
303
6.823e+41
16.3
5.115e+41
12.2
1.194e+42
28.5
42
325
325
325
325
7.874e+41
18.8
4.026e+41
9.6
1.190e+42
28.5
43
328
328
328
328
6.419e+40
1.5
8.826e+40
2.1
1.524e+41
3.6
44
331
331
331
331
3.601e+40
0.9
4.952e+40
1.2
8.553e+40
2.0
45
359
359
359
359
46
362
362
362
362
3.062e+38
0.0
4.211e+38
0.0
7.273e+38
0.0
47
365
365
365
365
1.381e+39
0.0
1.899e+39
0.0
3.280e+39
0.1
48
367
367
367
367
49
368
376
368
368
50
376
388
376
388
51
388
390
388
390
1.802e+40
0.4
2.478e+40
0.6
4.280e+40
1.0
52
390
393
390
391
1.995e+41
4.8
1.795e+40
0.4
2.175e+41
5.2
53
393
394
393
393
8.405e+39
0.2
1.156e+40
0.3
1.996e+40
0.5
54
394
394
394
394
1.931e+39
0.0
2.655e+39
0.1
4.586e+39
0.1
55
450
450
450
450
56
457
457
457
466
57
636
638
636
636
58
638
677
688
638
59
688
688
689
689
60
689
689
690
690
7.935e+40
1.9
1.091e+41
2.6
1.885e+41
4.5
61
690
690
705
705
4.376e+40
1.0
6.016e+40
1.4
1.039e+41
2.5
62
705
705
715
715
1.274e+41
3.0
4.258e+40
1.0
1.700e+41
4.1
63
715
715
725
734
5.727e+40
1.4
7.874e+40
1.9
1.360e+41
3.3
64
734
734
734
737
65
831
836
831
831
66
836
843
836
836
9.755e+39
0.2
1.341e+40
0.3
2.317e+40
0.6
67
843
848
848
843
68
848
872
872
848
1.651e+39
0.0
2.270e+39
0.1
3.921e+39
0.1
69
872
894
894
894
70
894
898
898
898
4.176e+42
99.9
5.922e+39
0.1
4.182e+42
100.0
71
898
904
904
904
72
904
905
906
909
3.393e+41
8.1
4.666e+41
11.2
8.059e+41
19.3
No.  Char.  ω TO  ω LOx  ω LOy  ω LOz  I ∥  I ⊥  I Total 
You can define the size of the supercell for the visualization of the vibration.
Nx: 
Ny: 
Nz: 
Normalized
Raw
Options for intensity.